29,704 Works

Phase–space non-paraxial propagation modes of optical fields in any state of spatial coherence

Román Castañeda & Hernán Muñoz
The non-paraxial marginal power spectrum is decomposed in propagation modes, so that the zeroth-order mode is only emitted by the radiant point sources at the aperture plane, while the modes of higher orders than zero are only emitted by the virtual point sources. It allows representing the non-paraxial propagation of optical fields in arbitrary states of spatial coherence and along arbitrary distances from the aperture plane without approximations, by simply using the power distribution and...

Phase–space non-paraxial propagation modes of optical fields in any state of spatial coherence

Román Castañeda & Hernán Muñoz
The non-paraxial marginal power spectrum is decomposed in propagation modes, so that the zeroth-order mode is only emitted by the radiant point sources at the aperture plane, while the modes of higher orders than zero are only emitted by the virtual point sources. It allows representing the non-paraxial propagation of optical fields in arbitrary states of spatial coherence and along arbitrary distances from the aperture plane without approximations, by simply using the power distribution and...

Towards a full characterization of a plasmonic nanostructure with a fluorescent near-field probe

V. Krachmalnicoff, D. Cao, A. Cazé, E. Castanié, R. Pierrat, N. Bardou, S. Collin, R. Carminati & Y. De Wilde
We report on the experimental and theoretical study of the spatial fluctuations of the local density of states (EM-LDOS) and of the fluorescence intensity in the near-field of a gold nanoantenna. EM-LDOS, fluorescence intensity and topography maps are acquired simultaneously by scanning a fluorescent nanosource grafted on the tip of an atomic force microscope at the surface of the sample. The results are in good quantitative agreement with numerical simulations. This work paves the way...

Towards a full characterization of a plasmonic nanostructure with a fluorescent near-field probe

V. Krachmalnicoff, D. Cao, A. Cazé, E. Castanié, R. Pierrat, N. Bardou, S. Collin, R. Carminati & Y. De Wilde
We report on the experimental and theoretical study of the spatial fluctuations of the local density of states (EM-LDOS) and of the fluorescence intensity in the near-field of a gold nanoantenna. EM-LDOS, fluorescence intensity and topography maps are acquired simultaneously by scanning a fluorescent nanosource grafted on the tip of an atomic force microscope at the surface of the sample. The results are in good quantitative agreement with numerical simulations. This work paves the way...

Coded aperture compressive temporal imaging

Patrick Llull, Xuejun Liao, Xin Yuan, Jianbo Yang, David Kittle, Lawrence Carin, Guillermo Sapiro & David J. Brady
We use mechanical translation of a coded aperture for code division multiple access compression of video. We discuss the compressed video’s temporal resolution and present experimental results for reconstructions of > 10 frames of temporal data per coded snapshot.

Coded aperture compressive temporal imaging

Patrick Llull, Xuejun Liao, Xin Yuan, Jianbo Yang, David Kittle, Lawrence Carin, Guillermo Sapiro & David J. Brady
We use mechanical translation of a coded aperture for code division multiple access compression of video. We discuss the compressed video’s temporal resolution and present experimental results for reconstructions of > 10 frames of temporal data per coded snapshot.

Fast generation of video holograms of three-dimensional moving objects using a motion compensation-based novel look-up table

Seung-Cheol Kim, Xiao-Bin Dong, Min-Woo Kwon & Eun-Soo Kim
A novel approach for fast generation of video holograms of three-dimensional (3-D) moving objects using a motion compensation-based novel-look-up-table (MC-N-LUT) method is proposed. Motion compensation has been widely employed in compression of conventional 2-D video data because of its ability to exploit high temporal correlation between successive video frames. Here, this concept of motion-compensation is firstly applied to the N-LUT based on its inherent property of shift-invariance. That is, motion vectors of 3-D moving objects...

Fast generation of video holograms of three-dimensional moving objects using a motion compensation-based novel look-up table

Seung-Cheol Kim, Xiao-Bin Dong, Min-Woo Kwon & Eun-Soo Kim
A novel approach for fast generation of video holograms of three-dimensional (3-D) moving objects using a motion compensation-based novel-look-up-table (MC-N-LUT) method is proposed. Motion compensation has been widely employed in compression of conventional 2-D video data because of its ability to exploit high temporal correlation between successive video frames. Here, this concept of motion-compensation is firstly applied to the N-LUT based on its inherent property of shift-invariance. That is, motion vectors of 3-D moving objects...

CCT- and CRI-tuning of white light-emitting diodes using three-dimensional non-close-packed colloidal photonic crystals with photonic stop-bands

Chun-Feng Lai, Chung-Chieh Chang, Ming-Jye Wang & Mau-Kuen Wu
This study exhibited the correlated color temperature (CCT)- and color-rendering index (CRI)-tuning behavior of light emission from white light-emitting diodes (WLEDs) using three-dimensional non-close-packed (3D NCP) colloidal photonic crystals (CPhCs). The CCT of approximately 5300 K (characteristic of cold WLEDs) of white light propagated through the NCP CPhCs dropped to 3000 K (characteristic of warm WLEDs) because of the photonic stop-bands based on the photonic band structures of NCP CPhCs. This study successfully developed a...

CCT- and CRI-tuning of white light-emitting diodes using three-dimensional non-close-packed colloidal photonic crystals with photonic stop-bands

Chun-Feng Lai, Chung-Chieh Chang, Ming-Jye Wang & Mau-Kuen Wu
This study exhibited the correlated color temperature (CCT)- and color-rendering index (CRI)-tuning behavior of light emission from white light-emitting diodes (WLEDs) using three-dimensional non-close-packed (3D NCP) colloidal photonic crystals (CPhCs). The CCT of approximately 5300 K (characteristic of cold WLEDs) of white light propagated through the NCP CPhCs dropped to 3000 K (characteristic of warm WLEDs) because of the photonic stop-bands based on the photonic band structures of NCP CPhCs. This study successfully developed a...

One way optical waveguides for matched non-reciprocal nanoantennas with dynamic beam scanning functionality

Yakir Hadad & Ben Z. Steinberg
Matching circuits for waveguide-nanoantenna connections are difficult to implement. However, if the waveguide permits only one-way propagation, the matching issue disappears since back-reflections cannot take place; the feed signal is converted to radiation at high efficiency. Hence, a terminated one-way waveguide may serve as an assembly consisting of a waveguide, a matching mechanism, and an antenna. Since one-way structures are inherently non-reciprocal, this antenna possesses different transmit and receive patterns. We test and demonstrate this...

One way optical waveguides for matched non-reciprocal nanoantennas with dynamic beam scanning functionality

Yakir Hadad & Ben Z. Steinberg
Matching circuits for waveguide-nanoantenna connections are difficult to implement. However, if the waveguide permits only one-way propagation, the matching issue disappears since back-reflections cannot take place; the feed signal is converted to radiation at high efficiency. Hence, a terminated one-way waveguide may serve as an assembly consisting of a waveguide, a matching mechanism, and an antenna. Since one-way structures are inherently non-reciprocal, this antenna possesses different transmit and receive patterns. We test and demonstrate this...

Monitoring the propagation of mechanical waves using an optical fiber distributed and dynamic strain sensor based on BOTDA

Yair Peled, Avi Motil, Iddo Kressel & Moshe Tur
We report a Brillouin-based fully distributed and dynamic monitoring of the strain induced by a propagating mechanical wave along a 20m long composite strip, to which surface a single-mode optical fiber was glued. Employing a simplified version of the Slope-Assisted Brillouin Optical Time Domain Analysis (SA-BOTDA) technique, the whole length of the strip was interrogated every 10ms (strip sampling rate of 100Hz) with a spatial resolution of the order of 1m. A dynamic spatially and...

Monitoring the propagation of mechanical waves using an optical fiber distributed and dynamic strain sensor based on BOTDA

Yair Peled, Avi Motil, Iddo Kressel & Moshe Tur
We report a Brillouin-based fully distributed and dynamic monitoring of the strain induced by a propagating mechanical wave along a 20m long composite strip, to which surface a single-mode optical fiber was glued. Employing a simplified version of the Slope-Assisted Brillouin Optical Time Domain Analysis (SA-BOTDA) technique, the whole length of the strip was interrogated every 10ms (strip sampling rate of 100Hz) with a spatial resolution of the order of 1m. A dynamic spatially and...

A 360-degree floating 3D display based on light field regeneration

Xinxing Xia, Xu Liu, Haifeng Li, Zhenrong Zheng, Han Wang, Yifan Peng & Weidong Shen
Using light field reconstruction technique, we can display a floating 3D scene in the air, which is 360-degree surrounding viewable with correct occlusion effect. A high-frame-rate color projector and flat light field scanning screen are used in the system to create the light field of real 3D scene in the air above the spinning screen. The principle and display performance of this approach are investigated in this paper. The image synthesis method for all the...

A 360-degree floating 3D display based on light field regeneration

Xinxing Xia, Xu Liu, Haifeng Li, Zhenrong Zheng, Han Wang, Yifan Peng & Weidong Shen
Using light field reconstruction technique, we can display a floating 3D scene in the air, which is 360-degree surrounding viewable with correct occlusion effect. A high-frame-rate color projector and flat light field scanning screen are used in the system to create the light field of real 3D scene in the air above the spinning screen. The principle and display performance of this approach are investigated in this paper. The image synthesis method for all the...

Enhancing diffractive multi-plane microscopy using colored illumination

Alexander Jesacher, Clemens Roider & Monika Ritsch-Marte
We present a method to increase the number of simultaneously imaged focal planes in diffractive multi-plane imaging. We exploit the chromatic properties of diffraction by using multicolor LED illumination and demonstrate time-synchronous imaging of up to 21 focal planes.We discuss the possibilities and limits given by the use of a liquid crystal spatial light modulator to display the diffractive patterns. The method is suitable for wide-field transmission and reflection microscopy.

Enhancing diffractive multi-plane microscopy using colored illumination

Alexander Jesacher, Clemens Roider & Monika Ritsch-Marte
We present a method to increase the number of simultaneously imaged focal planes in diffractive multi-plane imaging. We exploit the chromatic properties of diffraction by using multicolor LED illumination and demonstrate time-synchronous imaging of up to 21 focal planes.We discuss the possibilities and limits given by the use of a liquid crystal spatial light modulator to display the diffractive patterns. The method is suitable for wide-field transmission and reflection microscopy.

Subaperture correlation based digital adaptive optics for full field optical coherence tomography

Abhishek Kumar, Wolfgang Drexler & Rainer A. Leitgeb
This paper proposes a sub-aperture correlation based numerical phase correction method for interferometric full field imaging systems provided the complex object field information can be extracted. This method corrects for the wavefront aberration at the pupil/ Fourier transform plane without the need of any adaptive optics, spatial light modulators (SLM) and additional cameras. We show that this method does not require the knowledge of any system parameters. In the simulation study, we consider a full...

Subaperture correlation based digital adaptive optics for full field optical coherence tomography

Abhishek Kumar, Wolfgang Drexler & Rainer A. Leitgeb
This paper proposes a sub-aperture correlation based numerical phase correction method for interferometric full field imaging systems provided the complex object field information can be extracted. This method corrects for the wavefront aberration at the pupil/ Fourier transform plane without the need of any adaptive optics, spatial light modulators (SLM) and additional cameras. We show that this method does not require the knowledge of any system parameters. In the simulation study, we consider a full...

Full color natural light holographic camera

Myung K. Kim
Full-color, three-dimensional images of objects under incoherent illumination are obtained by a digital holography technique. Based on self-interference of two beam-split copies of the object’s optical field with differential curvatures, the apparatus consists of a beam-splitter, a few mirrors and lenses, a piezo-actuator, and a color camera. No lasers or other special illuminations are used for recording or reconstruction. Color holographic images of daylight-illuminated outdoor scenes and a halogen lamp-illuminated toy figure are obtained. From...

Full color natural light holographic camera

Myung K. Kim
Full-color, three-dimensional images of objects under incoherent illumination are obtained by a digital holography technique. Based on self-interference of two beam-split copies of the object’s optical field with differential curvatures, the apparatus consists of a beam-splitter, a few mirrors and lenses, a piezo-actuator, and a color camera. No lasers or other special illuminations are used for recording or reconstruction. Color holographic images of daylight-illuminated outdoor scenes and a halogen lamp-illuminated toy figure are obtained. From...

Visualization of brain circuits using two-photon fluorescence micro-optical sectioning tomography

Ting Zheng, Zhongqing Yang, Anan Li, Xiaohua Lv, Zhenqiao Zhou, Xiaojun Wang, Xiaoli Qi, Shiwei Li, Qingming Luo, Hui Gong & Shaoqun Zeng
Neural circuits are fundamental for brain functions. However, obtaining long range continuous projections of neurons in the entire brain is still challenging. Here a two-photon fluorescence micro-optical sectioning tomography (2p-fMOST) method is developed for high-throughput, high-resolution visualization of the brain circuits. Two-photon imaging technology is used to obtain high resolution, and acoustical optical deflector (AOD), an inertia-free beam scanner is used to realize fast and prolonged stable imaging. The combination of these techniques with imaging...

Visualization of brain circuits using two-photon fluorescence micro-optical sectioning tomography

Ting Zheng, Zhongqing Yang, Anan Li, Xiaohua Lv, Zhenqiao Zhou, Xiaojun Wang, Xiaoli Qi, Shiwei Li, Qingming Luo, Hui Gong & Shaoqun Zeng
Neural circuits are fundamental for brain functions. However, obtaining long range continuous projections of neurons in the entire brain is still challenging. Here a two-photon fluorescence micro-optical sectioning tomography (2p-fMOST) method is developed for high-throughput, high-resolution visualization of the brain circuits. Two-photon imaging technology is used to obtain high resolution, and acoustical optical deflector (AOD), an inertia-free beam scanner is used to realize fast and prolonged stable imaging. The combination of these techniques with imaging...

Vector multi-soliton operation and interaction in a graphene mode-locked fiber laser

Yu Feng Song, Lei Li, Han Zhang, De Yuan Shen, Ding Yuan Tang & Kian Ping Loh
We experimentally investigated the vector multi-soliton operation and vector soliton interaction in an erbium doped fiber laser passively mode locked by atomic layer graphene. It is found that the vector multi-soliton operation exhibited several characteristic modes. These are the random static distribution of vector solitons, stable bunches of vector solitons, restless oscillations of vector solitons, rain of vector solitons, and emission of a so-called “giant vector soliton”. The formation mechanisms of the operation modes were...

Resource Types

  • Dataset
    18,218
  • Collection
    5,684
  • Image
    4,479
  • Audiovisual
    652
  • Text
    372
  • Software
    29

Publication Year

  • 2013
    29,704