82 Works

Valorcarn-TETIS: Terms extracted with Biotex

Mathieu Roche, Maguelonne Teisseire & Gaurav Shrivastava
Text-Mining: Terms extracted with Biotex tool (http://tubo.lirmm.fr/biotex) from "Valorcarn Corpus" (http://dx.doi.org/10.18167/DVN1/7YTQGQ). -- Valorcarn Project (2015-2017) [project supported by GloFoodS program (INRA-Cirad)]. Topic: Mining of scientific documents for identification of process that enables to reduce losses and waste.

Valorcarn-TETIS: Terms extracted with Rake

Mathieu Roche, Maguelonne Teisseire & Gaurav Shrivastava
Text-Mining: Terms extracted with Rake tool (https://github.com/aneesha/RAKE) from "Valorcarn Corpus" (http://dx.doi.org/10.18167/DVN1/7YTQGQ). -- Valorcarn Project (2015-2017) [project supported by GloFoodS program (INRA-Cirad)]. Topic: Mining of scientific documents for identification of process that enables to reduce losses and waste.

Valorcarn-TETIS: Fusion of terms extracted with Biotex and Fastr

Mathieu Roche, Maguelonne Teisseire & Gaurav Shrivastava
Text-Mining: Fusion of terms extracted with Biotex and Fastr from "Valorcarn Corpus" (http://dx.doi.org/10.18167/DVN1/7YTQGQ). -- Valorcarn Project (2015-2017) [project supported by GloFoodS program (INRA-Cirad)]. Topic: Mining of scientific documents for identification of process that enables to reduce losses and waste.

Valorcarn-TETIS: Variations of terms extracted with Fastr (driven extraction)

Mathieu Roche, Maguelonne Teisseire & Gaurav Shrivastava
Text mining: Extraction of variations of term extraction. Input: (1) list of terms, (2) corpus ("Valorcarn Corpus" - http://dx.doi.org/10.18167/DVN1/7YTQGQ) For instance, with "biltong samples", we obtain "biltong spice sample", "samples to produce biltong", etc. -- Valorcarn Project (2015-2017) [project supported by GloFoodS program (INRA-Cirad)]. Topic: Mining of scientific documents for identification of process that enables to reduce losses and waste

Valorcarn-TETIS: Semantic groups of terms

Mathieu Roche, Maguelonne Teisseire & Gaurav Shrivastava
Text-Mining: The extracted terms are gathered according the head (first and last words) (e.g. (1) food consumption / food pathogen / food preservation, (2) spoiled biltong / venison biltong / wet biltong, and so forth. -- Valorcarn Project (2015-2017) [project supported by GloFoodS program (INRA-Cirad)]. Topic: Mining of scientific documents for identification of process that enables to reduce losses and waste.

Valorcarn-TETIS: Candidates for OTR (Ontological and Terminological Resource)

Mathieu Roche, Maguelonne Teisseire & Gaurav Shrivastava
Text Mining: The different terms extracted by text-mining approaches are candidates for an OTR (Ontological and Terminological Resource) associated to Valorcarn Project. -- Valorcarn Project (2015-2017) [project supported by GloFoodS program (INRA-Cirad)]. Topic: Mining of scientific documents for identification of process that enables to reduce losses and waste.

Dataset of soil and cacao leaf samples collected in all regions of Côte d'Ivoire

Didier SNOECK, Louis KOKO, Kouamé N'GUESSAN & Émmanuel KASSIN
Données sur les analyses chimiques des échantillons de sols et feuilles des cacaoyers (Theobroma cacao L.) prélevés dans des plantations de cacaoyers adultes sélectionnées dans toutes les régions du sud de la Côte d'Ivoire. ............ ................ Data of chemical analysis of soil and cacao (Theobroma cacao L.) leaf samples collected in adult cacao plantations selected in all regions of Southern Côte d'Ivoire.

Valorcarn-TETIS: Terms extracted with Fastr (free extraction)

Mathieu Roche, Maguelonne Teisseire & Gaurav Shrivastava
Text-Mining: Terms extracted with FASTR tool (free extraction) from "Valorcarn Corpus" (http://dx.doi.org/10.18167/DVN1/7YTQGQ). -- Valorcarn Project (2015-2017) [project supported by GloFoodS program (INRA-Cirad)]. Topic: Mining of scientific documents for identification of process that enables to reduce losses and waste.

Valorcarn-TETIS: Corpus

Mathieu Roche, Maguelonne Teisseire & Gaurav Shrivastava
Collect of "Valorcarn Corpus" (in English). -- Valorcarn Project (2015-2017) [project supported by GloFoodS program (INRA-Cirad)]. Topic: Mining of scientific documents for identification of process that enables to reduce losses and waste.

Geodict: an integrated gazetteer

Fize Jacques & Gaurav Shrivastav
[EN] Geodict is a gazetteer where 4.1 millions spatial entities are referenced. Each entry is associated with basic yet detailed information such as multi-lingual labels, polygon of boundaries, coordinates, class, etc. Geodict data are extracted from famous dataset: Geonames, Wikidata and OpenStreetMap. [FR] Geodict est un gazetier avec 4.1 millions d'entités spatiales référencées. Chaque entrée est associée avec un ensemble de données basiques mais précise comme les labels multilingues, le(s) polygone(s) des frontières, les coordonnées,...

A corpus of 1000 authentic SMS in French with spatial labels

Sarah Zenasni, Eric Kergosien, Mathieu Roche & Maguelonne Teisseire
Extract of 1000 authentic French SMS from a corpus of more than 88000 SMS (http://88milsms.huma-num.fr/). Spatial entities are tagged (with label). First, an automatic labelling approach based on text-mining techniques is applied in order to obtain the first corpus ("corpus1_automatic_labelling_1000SMS.xml"). The second corpus ("corpus2_manual_labelling_1000SMS.xml") has manual tags.

CIRAD’s wood collection

Didier Normand, Alain Mariaux, Pierre Détienne & Patrick Langbour
Le Cirad dispose d’une xylothèque qui constitue une des plus importantes collections de bois tropicaux et tempérés disponibles à ce jour. Initiée en 1937 à partir de plusieurs petites collections elles-mêmes rassemblées depuis la fin du XIXème siècle à des fins d’exposition et de démonstration, elle est aujourd’hui régulièrement mise à jour et enrichie, notamment dans le cadre d’échanges de spécimens avec différents laboratoires partenaires au niveau international. Début 2017, la collection était constituée de...

Resource Types

  • Text
    61
  • Dataset
    17
  • Software
    3
  • Collection
    1

Publication Year

  • 2017
    22
  • 2016
    4
  • 2015
    6
  • 2014
    6
  • 2013
    5
  • 2012
    6
  • 2011
    8
  • 2010
    4
  • 2009
    2
  • 2008
    1
  • 2007
    1
  • 1980
    1
  • 1977
    9
  • 1976
    7