6,727 Works

Planar Support for Non-piercing Regions and Applications

Rajiv Raman & Saurabh Ray
Given a hypergraph H=(X,S), a planar support for H is a planar graph G with vertex set X, such that for each hyperedge S in S, the sub-graph of G induced by the vertices in S is connected. Planar supports for hypergraphs have found several algorithmic applications, including several packing and covering problems, hypergraph coloring, and in hypergraph visualization. The main result proved in this paper is the following: given two families of regions R...

On Learning Linear Functions from Subset and Its Applications in Quantum Computing

Gábor Ivanyos, Anupam Prakash & Miklos Santha
Let F_{q} be the finite field of size q and let l: F_{q}^{n} -> F_{q} be a linear function. We introduce the Learning From Subset problem LFS(q,n,d) of learning l, given samples u in F_{q}^{n} from a special distribution depending on l: the probability of sampling u is a function of l(u) and is non zero for at most d values of l(u). We provide a randomized algorithm for LFS(q,n,d) with sample complexity (n+d)^{O(d)} and...

Strong Collapse for Persistence

Jean-Daniel Boissonnat, Siddharth Pritam & Divyansh Pareek
We introduce a fast and memory efficient approach to compute the persistent homology (PH) of a sequence of simplicial complexes. The basic idea is to simplify the complexes of the input sequence by using strong collapses, as introduced by J. Barmak and E. Miniam [DCG (2012)], and to compute the PH of an induced sequence of reduced simplicial complexes that has the same PH as the initial one. Our approach has several salient features that...

On the Complexity of the (Approximate) Nearest Colored Node Problem

Maximilian Probst
Given a graph G=(V,E) where each vertex is assigned a color from the set C={c_1, c_2, .., c_sigma}. In the (approximate) nearest colored node problem, we want to query, given v in V and c in C, for the (approximate) distance dist^(v, c) from v to the nearest node of color c. For any integer 1 <= k <= log n, we present a Color Distance Oracle (also often referred to as Vertex-label Distance Oracle)...

An Exact Algorithm for the Steiner Forest Problem

Daniel R. Schmidt, Bernd Zey & François Margot
The Steiner forest problem asks for a minimum weight forest that spans a given number of terminal sets. The problem has famous linear programming based 2-approximations [Agrawal et al., 1995; Goemans and Williamson, 1995; Jain, 2001] whose bottleneck is the fact that the most natural formulation of the problem as an integer linear program (ILP) has an integrality gap of 2. We propose new cut-based ILP formulations for the problem along with exact branch-and-bound based...

Large Low-Diameter Graphs are Good Expanders

Michael Dinitz, Michael Schapira & Gal Shahaf
We revisit the classical question of the relationship between the diameter of a graph and its expansion properties. One direction is well understood: expander graphs exhibit essentially the lowest possible diameter. We focus on the reverse direction, showing that "sufficiently large" graphs of fixed diameter and degree must be "good" expanders. We prove this statement for various definitions of "sufficiently large" (multiplicative/additive factor from the largest possible size), for different forms of expansion (edge, vertex,...

Improved Dynamic Graph Coloring

Shay Solomon & Nicole Wein
This paper studies the fundamental problem of graph coloring in fully dynamic graphs. Since the problem of computing an optimal coloring, or even approximating it to within n^{1-epsilon} for any epsilon > 0, is NP-hard in static graphs, there is no hope to achieve any meaningful computational results for general graphs in the dynamic setting. It is therefore only natural to consider the combinatorial aspects of dynamic coloring, or alternatively, study restricted families of graphs....

Soft Subdivision Motion Planning for Complex Planar Robots

Bo Zhou, Yi-Jen Chiang & Chee Yap
The design and implementation of theoretically-sound robot motion planning algorithms is challenging. Within the framework of resolution-exact algorithms, it is possible to exploit soft predicates for collision detection. The design of soft predicates is a balancing act between easily implementable predicates and their accuracy/effectivity. In this paper, we focus on the class of planar polygonal rigid robots with arbitrarily complex geometry. We exploit the remarkable decomposability property of soft collision-detection predicates of such robots. We...

Online Non-Preemptive Scheduling to Minimize Weighted Flow-time on Unrelated Machines

Giorgio Lucarelli, Benjamin Moseley, Nguyen Kim Thang, Abhinav Srivastav & Denis Trystram
In this paper, we consider the online problem of scheduling independent jobs non-preemptively so as to minimize the weighted flow-time on a set of unrelated machines. There has been a considerable amount of work on this problem in the preemptive setting where several competitive algorithms are known in the classical competitive model. However, the problem in the non-preemptive setting admits a strong lower bound. Recently, Lucarelli et al. presented an algorithm that achieves a O(1/epsilon^2)-competitive...

Quasi-Polynomial Time Approximation Schemes for Packing and Covering Problems in Planar Graphs

Michal Pilipczuk, Erik Jan Van Leeuwen & Andreas Wiese
We consider two optimization problems in planar graphs. In {Maximum Weight Independent Set of Objects} we are given a graph G and a family D of {objects}, each being a connected subgraph of G with a prescribed weight, and the task is to find a maximum-weight subfamily of D consisting of pairwise disjoint objects. In {Minimum Weight Distance Set Cover} we are given an edge-weighted graph G, two sets D,C of vertices of G, where...

Polynomial Kernels for Hitting Forbidden Minors under Structural Parameterizations

Bart M. P. Jansen & Astrid Pieterse
We investigate polynomial-time preprocessing for the problem of hitting forbidden minors in a graph, using the framework of kernelization. For a fixed finite set of graphs F, the F-Deletion problem is the following: given a graph G and integer k, is it possible to delete k vertices from G to ensure the resulting graph does not contain any graph from F as a minor? Earlier work by Fomin, Lokshtanov, Misra, and Saurabh [FOCS'12] showed that...

Quantum Algorithms for Connectivity and Related Problems

Michael Jarret, Stacey Jeffery, Shelby Kimmel & Alvaro Piedrafita
An important family of span programs, st-connectivity span programs, have been used to design quantum algorithms in various contexts, including a number of graph problems and formula evaluation problems. The complexity of the resulting algorithms depends on the largest positive witness size of any 1-input, and the largest negative witness size of any 0-input. Belovs and Reichardt first showed that the positive witness size is exactly characterized by the effective resistance of the input graph,...

Data Reduction for Maximum Matching on Real-World Graphs: Theory and Experiments

Viatcheslav Korenwein, André Nichterlein, Rolf Niedermeier & Philipp Zschoche
Finding a maximum-cardinality or maximum-weight matching in (edge-weighted) undirected graphs is among the most prominent problems of algorithmic graph theory. For n-vertex and m-edge graphs, the best known algorithms run in O~(m sqrt{n}) time. We build on recent theoretical work focusing on linear-time data reduction rules for finding maximum-cardinality matchings and complement the theoretical results by presenting and analyzing (thereby employing the kernelization methodology of parameterized complexity analysis) linear-time data reduction rules for the positive-integer-weighted...

Searching a Tree with Permanently Noisy Advice

Lucas Boczkowski, Amos Korman & Yoav Rodeh
We consider a search problem on trees using unreliable guiding instructions. Specifically, an agent starts a search at the root of a tree aiming to find a treasure hidden at one of the nodes by an adversary. Each visited node holds information, called advice, regarding the most promising neighbor to continue the search. However, the memory holding this information may be unreliable. Modeling this scenario, we focus on a probabilistic setting. That is, the advice...

Optimal Online Contention Resolution Schemes via Ex-Ante Prophet Inequalities

Euiwoong Lee & Sahil Singla
Online contention resolution schemes (OCRSs) were proposed by Feldman, Svensson, and Zenklusen [Moran Feldman et al., 2016] as a generic technique to round a fractional solution in the matroid polytope in an online fashion. It has found applications in several stochastic combinatorial problems where there is a commitment constraint: on seeing the value of a stochastic element, the algorithm has to immediately and irrevocably decide whether to select it while always maintaining an independent set...

Equilibrium Computation in Atomic Splittable Routing Games

Umang Bhaskar & Phani Raj Lolakapuri
We present polynomial-time algorithms as well as hardness results for equilibrium computation in atomic splittable routing games, for the case of general convex cost functions. These games model traffic in freight transportation, market oligopolies, data networks, and various other applications. An atomic splittable routing game is played on a network where the edges have traffic-dependent cost functions, and player strategies correspond to flows in the network. A player can thus split its traffic arbitrarily among...

Disconnected Cuts in Claw-free Graphs

Barnaby Martin, Daniël Paulusma & Erik Jan Van Leeuwen
A disconnected cut of a connected graph is a vertex cut that itself also induces a disconnected subgraph. The corresponding decision problem is called Disconnected Cut. It is known that Disconnected Cut is NP-hard on general graphs, while polynomial-time algorithms exist for several graph classes. However, the complexity of the problem on claw-free graphs remained an open question. Its connection to the complexity of the problem to contract a claw-free graph to the 4-vertex cycle...

Practical Low-Dimensional Halfspace Range Space Sampling

Michael Matheny & Jeff M. Phillips
We develop, analyze, implement, and compare new algorithms for creating epsilon-samples of range spaces defined by halfspaces which have size sub-quadratic in 1/epsilon, and have runtime linear in the input size and near-quadratic in 1/epsilon. The key to our solution is an efficient construction of partition trees. Despite not requiring any techniques developed after the early 1990s, apparently such a result was never explicitly described. We demonstrate that our implementations, including new implementations of several...

Nearly-Optimal Mergesorts: Fast, Practical Sorting Methods That Optimally Adapt to Existing Runs

J. Ian Munro & Sebastian Wild
We present two stable mergesort variants, "peeksort" and "powersort", that exploit existing runs and find nearly-optimal merging orders with negligible overhead. Previous methods either require substantial effort for determining the merging order (Takaoka 2009; Barbay & Navarro 2013) or do not have an optimal worst-case guarantee (Peters 2002; Auger, Nicaud & Pivoteau 2015; Buss & Knop 2018) . We demonstrate that our methods are competitive in terms of running time with state-of-the-art implementations of stable...

On a Problem of Danzer

Nabil H. Mustafa & Saurabh Ray
Let C be a bounded convex object in R^d, and P a set of n points lying outside C. Further let c_p, c_q be two integers with 1 <= c_q <= c_p <= n - floor[d/2], such that every c_p + floor[d/2] points of P contains a subset of size c_q + floor[d/2] whose convex-hull is disjoint from C. Then our main theorem states the existence of a partition of P into a small number...

Generalized Coloring of Permutations

Vít Jelínek, Michal Opler & Pavel Valtr
A permutation pi is a merge of a permutation sigma and a permutation tau, if we can color the elements of pi red and blue so that the red elements have the same relative order as sigma and the blue ones as tau. We consider, for fixed hereditary permutation classes C and D, the complexity of determining whether a given permutation pi is a merge of an element of C with an element of D....

Solving Partition Problems Almost Always Requires Pushing Many Vertices Around

Iyad Kanj, Christian Komusiewicz, Manuel Sorge & Erik Jan Van Leeuwen
A fundamental graph problem is to recognize whether the vertex set of a graph G can be bipartitioned into sets A and B such that G[A] and G[B] satisfy properties Pi_A and Pi_B, respectively. This so-called (Pi_A,Pi_B)-Recognition problem generalizes amongst others the recognition of 3-colorable, bipartite, split, and monopolar graphs. A powerful algorithmic technique that can be used to obtain fixed-parameter algorithms for many cases of (Pi_A,Pi_B)-Recognition, as well as several other problems, is the...

String Attractors: Verification and Optimization

Dominik Kempa, Alberto Policriti, Nicola Prezza & Eva Rotenberg
String attractors [STOC 2018] are combinatorial objects recently introduced to unify all known dictionary compression techniques in a single theory. A set Gamma subseteq [1..n] is a k-attractor for a string S in Sigma^n if and only if every distinct substring of S of length at most k has an occurrence crossing at least one of the positions in Gamma. Finding the smallest k-attractor is NP-hard for k >= 3, but polylogarithmic approximations can be...

Efficient and Adaptive Parameterized Algorithms on Modular Decompositions

Stefan Kratsch & Florian Nelles
We study the influence of a graph parameter called modular-width on the time complexity for optimally solving well-known polynomial problems such as Maximum Matching, Triangle Counting, and Maximum s-t Vertex-Capacitated Flow. The modular-width of a graph depends on its (unique) modular decomposition tree, and can be computed in linear time O(n+m) for graphs with n vertices and m edges. Modular decompositions are an important tool for graph algorithms, e.g., for linear-time recognition of certain graph...

On Nondeterministic Derandomization of Freivalds' Algorithm: Consequences, Avenues and Algorithmic Progress

Marvin Künnemann
Motivated by studying the power of randomness, certifying algorithms and barriers for fine-grained reductions, we investigate the question whether the multiplication of two n x n matrices can be performed in near-optimal nondeterministic time O~(n^2). Since a classic algorithm due to Freivalds verifies correctness of matrix products probabilistically in time O(n^2), our question is a relaxation of the open problem of derandomizing Freivalds' algorithm. We discuss consequences of a positive or negative resolution of this...

Resource Types

  • Text
  • Software

Publication Year

  • 2018
  • 2017
  • 2016
  • 2015
  • 2014
  • 2013
  • 2012
  • 2011
  • 2010
  • 2009
  • 2008
  • 2007
  • 2006

Registration Year

  • 2018
  • 2017
  • 2016
  • 2015
  • 2014
  • 2013
  • 2012
  • 2011
  • 2010
  • 2009