3 Works

Inherent regulatory asymmetry emanating from network architecture in a prevalent autoregulatory motif

Robert Brewster
Predicting gene expression from DNA sequence remains a major goal in the field of gene regulation. A challenge to this goal is the connectivity of the network, whose role in altering gene expression remains unclear. Here, we study a common autoregulatory network motif, the negative single-input module, to explore the regulatory properties inherited from the motif. Using stochastic simulations and a synthetic biology approach in E. coli, we find that the TF gene and its...

Inherent regulatory asymmetry emanating from network architecture in a prevalent autoregulatory motif

Robert Brewster
Predicting gene expression from DNA sequence remains a major goal in the field of gene regulation. A challenge to this goal is the connectivity of the network, whose role in altering gene expression remains unclear. Here, we study a common autoregulatory network motif, the negative single-input module, to explore the regulatory properties inherited from the motif. Using stochastic simulations and a synthetic biology approach in E. coli, we find that the TF gene and its...

Inherent regulatory asymmetry emanating from network architecture in a prevalent autoregulatory motif

Robert Brewster
Predicting gene expression from DNA sequence remains a major goal in the field of gene regulation. A challenge to this goal is the connectivity of the network, whose role in altering gene expression remains unclear. Here, we study a common autoregulatory network motif, the negative single-input module, to explore the regulatory properties inherited from the motif. Using stochastic simulations and a synthetic biology approach in E. coli, we find that the TF gene and its...

Registration Year

  • 2020
    3

Resource Types

  • Image
    3

Affiliations

  • University of Massachusetts Medical School
    3