106 Works

CERN Yellow Reports: Monographs, Vol 3 (2018): The CLIC potential for new physics

Corresponding editors: J. de Blas, R. Franceschini, F. Riva, P. Roloff, U. Schnoor, M. Spannowsky, J. D. Wells, A. Wulzer and J. Zupan Abstract: The Compact Linear Collider (CLIC) is a mature option for the future of high energy physics. It combines the benefits of the clean environment of e+e− colliders with operation at high centre-of-mass energies, allowing to probe scales beyond the reach of the Large Hadron Collider (LHC) for many scenarios of new...

CERN Yellow Reports: Monographs, Vol 4 (2019): Study on the career trajectories of people with a working experience at CERN

This document describes the results of a study, aiming to measure the impact of CERN and of its environment on the career of people who worked at the laboratory. The data was collected using two on-line question- naires, launched in 2016 and 2017, targeting experimentalists and theorists, respectively. The mandate, the methodology followed, the questionnaires and the analysis of the data collected are presented.

Preface

A. Dainese, M. Mangano, A. B. Meyer, A. Nisati, G. Salam & M. Vesterinen
The preface presents the motivation for making the report, the mandate of the five working groups and the corresponding conveners.

Executive summary

No abstract.

Introduction and overview

A. Blondel, J. Gluza, S. Jadach, P. Janot & T. Riemann
This report includes a collection of studies devoted to a discussion of (i) the status of theoretical efforts towards the calculation of higher-order Standard Model (SM) corrections needed for the FCC-ee precision measurement programme, (ii) the possibility of making discoveries in physics by means of these precision measurements, and (iii) methods and tools that must be developed to guarantee precision calculations of the observables to be measured. This report originates from presentations at the 11th...

CoLoRFulNNLO at work: a determination of αs

A. Kardos, S. Kluth, G. Somogyi, Z. Trócsányi, Z. Tulipánt & A. Verbytskyi
The most precise determination of fundamental parameters of the Standard Model is very important. One such fundamental parameter is the strong coupling of QCD. Its importance can be gauged by taking a look at the various experiments and configurations where it was measured; for an up-to-date summary. The precise measurement of such a parameter is difficult for two reasons. First, high-quality data with small and well-controlled uncertainties are needed. Second, high-precision calculations are needed from...

Top pair production and mass determination

A. Maier
The mass of the top quark can be measured in a well-defined scheme and with unrivalled precision at a future electron–positron collider, like the FCC-ee. The most sensitive observable is the total production cross-section for bbbarW+W-X final states near the top pair production threshold. I review the state of the art in theory predictions for this quantity.

Numerical multiloop calculations: sector decomposition and QMC integration in pySecDec

S. Borowka, G. Heinrich, S. Jahn, S.P. Jones, M. Kerner & J. Schlenk
The FCC-ee will allow the experimental uncertainties on several important observables, such as the electroweak precision observables (EWPOs), to be reduced by up to two orders of magnitude compared with the previous generation LEP and SLC experiments. To be able to best exploit this unprecedented boost in precision, it is also necessary for theoretical predictions to be known with sufficient accuracy. In practice, this means that very high-order perturbative corrections to electroweak precision observables and...

Recent developments in Kira

P. Maierhöfer & J. Usovitsch
In this section, we report on the recent progress made in the development of the Feynman integral reduction program Kira. The development is focused on algorithmic improvements that are essential to extend the range of feasible high-precision calculations for present and future colliders like the FCC-ee.

Future physics opportunities for high-density QCD at the LHC with heavy-ion and proton beams

Editors: Z. Citron, A. Dainese, J. F. Grosse-Oetringhaus, J. M. Jowett, Y.-J. Lee & U. A. Wiedemann
The future opportunities for high-density QCD studies with ion and proton beams at the LHC are presented. Four major scientific goals are identified: the characterisation of the macroscopic long wavelength Quark-Gluon Plasma (QGP) properties with unprecedented precision, the investigation of the microscopic parton dynamics underlying QGP properties, the development of a unified picture of particle production and QCD dynamics from small (pp) to large (nucleus--nucleus) systems, the exploration of parton densities in nuclei in a...

CERN Yellow Reports: Monographs, Vol. 6 (2020): Linac4 design report

Editor: Maurizio Vretenar Linear accelerator 4 (Linac4) is designed to accelerate negative hydrogen ions for injection into the Proton Synchrotron Booster (PSB). It will become the source of proton beams for the Large Hadron Collider (LHC) after the long shutdown in 2019–2020. Linac4 will accelerate H– ions, consisting of a hydrogen atom with an additional electron, to 160 MeV energy and then inject them into the PSB, which is part of the LHC injection chain....

Lattice considerations

D. Einfeld
No abstract.

Beam dynamics and layout of the SEE-LS

D. Einfeld & H. Ghasem
No abstract.

Diagnostic system

F. Perez
No abstract.

Building, infrastructure, and site

D. Einfeld
No abstract.

Organization

D. Einfeld
No abstract.

Insertion magnets

E. Todesco & P. Ferracin
No abstract available.

Acknowledgements

No abstract.

Precision predictions for Higgs decays in the (N)MSSM

F. Domingo, S. Heinemeyer, S. Paßehr & G. Weiglein
No abstract.

Energy deposition and radiation to electronics

F. Cerutti, R. Garcia Alia, G. Lerner, M. Sabaté Gilarte & A. Tsinganis
Proton–proton inelastic collisions taking place inside the four LHC detectors generate a large number of secondary particles with an average multiplicity of approximately 120 per single proton–proton interaction with 7 TeV beams, but with very substantial fluctuations over different events. Moving away from the interaction point (IP), this multiform population evolves, even before touching the surrounding material, because of the decay of unstable particles (in particular neutral pions decaying into photon pairs).

Beam injection and dumping systems

C. Bracco, M.J. Barnes & A. Lechner
The beam transfer into the LHC is achieved by the two transfer lines TI2 and TI8, together with the septum and injection kickers, plus associated systems to ensure the protection of the LHC elements in case of a mis- steered beam. The foreseen increase in injected intensity and brightness for the HL-LHC means that the protection functionality of the beam-intercepting devices (TDI) needs upgrading. In addition, the higher beam current significantly increases the beam-induced power...

Collider-experiment interface

F. Sanchez Galan, H. Burkhardt, F. Cerrutti, A. Gaddi, J.L. Grenard, L. Krzempek, M. Lino Diogo Dos Santos, J. Perez Espinos, M. Raymond & P. Santos Diaz
The HL-LHC targeted luminosities for the four main experiments will require upgrades of multiple subsystems in In particular, the LHCb experiment subsystems as the vertex locator (VELO), the ring-imaging Cherenkov (RICH) detectors and the tracking system will undergo a major upgrade in LS2, and its surrounding protection systems will be upgraded with neutral absorbers (TANB) to allow to reach the HL-LHC foreseen peak luminosity as from Run 3. Also, in LS2, ALICE will replace its...

Chapter 2: Higgs and EW Symmetry Breaking Studies

R. Contino Et Al.
This Chapter summarises the physics opportunities for the study of Higgs bosons and the dynamics of electroweak symmetry breaking at the 100 TeV pp collider.

Chapter 4: Heavy Ions at the Future Circular Collider

A. Dainese Et Al.
The Future Circular Collider (FCC) Study is aimed at assessing the physics potential and the technical feasibility of a new collider with centre-of-mass energies, in the hadron–hadron collision mode, seven times larger than the nominal LHC energies. Operating such machine with heavy ions is an option that is being considered in the accelerator design studies. It would provide, for example, Pb–Pb and p–Pb collisions at √sNN = 39 and 63 TeV, respectively, per nucleon–nucleon collision,...

CERN Yellow Reports: Monographs, Vol 2 (2017): Handbook of LHC Higgs cross sections: 4. Deciphering the nature of the Higgs sector

Edited by D. de Florian, C. Grojean, F. Maltoni, C. Mariotti, A. Nikitenko, M. Pieri, P. Savard, M. Schumacher, R. Tanaka CERN-2017-002-M, ISBN (Print) 978–92–9083–442–7, ISBN (PDF) 978–92–9083–443–4

Registration Year

  • 2021
    15
  • 2020
    65
  • 2019
    15
  • 2018
    2
  • 2017
    9

Resource Types

  • Text
    106