487,442 Works

SH325592.07FU

Urmas Kõljalg, Kessy Abarenkov, R. Henrik Nilsson, Karl-Henrik Larsson, Anders Bjørnsgard Aas, Rachel Adams, Artur Alves, Joseph F. Ammirati, A. Elizabeth Arnold, Mohammad Bahram, Johan Bengtsson-Palme, Anna Berlin, Synnøve Botnen, Sarah Bourlat, Tanya Cheeke, Bálint Dima, Rein Drenkhan, Camila Duarte, Margarita Dueñas, Ursula Eberhardt, Hanna Friberg, Tobias G. Frøslev, Sigisfredo Garnica, József Geml, Masoomeh Ghobad-Nejhad … & Christian Wurzbacher
UNITE provides a unified way for delimiting, identifying, communicating, and working with DNA-based Species Hypotheses (SH). All fungal ITS sequences in the international nucleotide sequence databases are clustered to approximately the species level by applying a set of dynamic distance values (<0.5 - 3.0%). All species hypotheses are given a unique, stable name in the form of a DOI, and their taxonomic and ecological annotations are verified through distributed, web-based third-party annotation efforts. SHs are...

SH420991.07FU

Urmas Kõljalg, Kessy Abarenkov, R. Henrik Nilsson, Karl-Henrik Larsson, Anders Bjørnsgard Aas, Rachel Adams, Artur Alves, Joseph F. Ammirati, A. Elizabeth Arnold, Mohammad Bahram, Johan Bengtsson-Palme, Anna Berlin, Synnøve Botnen, Sarah Bourlat, Tanya Cheeke, Bálint Dima, Rein Drenkhan, Camila Duarte, Margarita Dueñas, Ursula Eberhardt, Hanna Friberg, Tobias G. Frøslev, Sigisfredo Garnica, József Geml, Masoomeh Ghobad-Nejhad … & Christian Wurzbacher
UNITE provides a unified way for delimiting, identifying, communicating, and working with DNA-based Species Hypotheses (SH). All fungal ITS sequences in the international nucleotide sequence databases are clustered to approximately the species level by applying a set of dynamic distance values (<0.5 - 3.0%). All species hypotheses are given a unique, stable name in the form of a DOI, and their taxonomic and ecological annotations are verified through distributed, web-based third-party annotation efforts. SHs are...

SH006607.07FU

Urmas Kõljalg, Kessy Abarenkov, R. Henrik Nilsson, Karl-Henrik Larsson, Anders Bjørnsgard Aas, Rachel Adams, Artur Alves, Joseph F. Ammirati, A. Elizabeth Arnold, Mohammad Bahram, Johan Bengtsson-Palme, Anna Berlin, Synnøve Botnen, Sarah Bourlat, Tanya Cheeke, Bálint Dima, Rein Drenkhan, Camila Duarte, Margarita Dueñas, Ursula Eberhardt, Hanna Friberg, Tobias G. Frøslev, Sigisfredo Garnica, József Geml, Masoomeh Ghobad-Nejhad … & Christian Wurzbacher
UNITE provides a unified way for delimiting, identifying, communicating, and working with DNA-based Species Hypotheses (SH). All fungal ITS sequences in the international nucleotide sequence databases are clustered to approximately the species level by applying a set of dynamic distance values (<0.5 - 3.0%). All species hypotheses are given a unique, stable name in the form of a DOI, and their taxonomic and ecological annotations are verified through distributed, web-based third-party annotation efforts. SHs are...

SH248511.07FU

Urmas Kõljalg, Kessy Abarenkov, R. Henrik Nilsson, Karl-Henrik Larsson, Anders Bjørnsgard Aas, Rachel Adams, Artur Alves, Joseph F. Ammirati, A. Elizabeth Arnold, Mohammad Bahram, Johan Bengtsson-Palme, Anna Berlin, Synnøve Botnen, Sarah Bourlat, Tanya Cheeke, Bálint Dima, Rein Drenkhan, Camila Duarte, Margarita Dueñas, Ursula Eberhardt, Hanna Friberg, Tobias G. Frøslev, Sigisfredo Garnica, József Geml, Masoomeh Ghobad-Nejhad … & Christian Wurzbacher
UNITE provides a unified way for delimiting, identifying, communicating, and working with DNA-based Species Hypotheses (SH). All fungal ITS sequences in the international nucleotide sequence databases are clustered to approximately the species level by applying a set of dynamic distance values (<0.5 - 3.0%). All species hypotheses are given a unique, stable name in the form of a DOI, and their taxonomic and ecological annotations are verified through distributed, web-based third-party annotation efforts. SHs are...

SH236963.07FU

Urmas Kõljalg, Kessy Abarenkov, R. Henrik Nilsson, Karl-Henrik Larsson, Anders Bjørnsgard Aas, Rachel Adams, Artur Alves, Joseph F. Ammirati, A. Elizabeth Arnold, Mohammad Bahram, Johan Bengtsson-Palme, Anna Berlin, Synnøve Botnen, Sarah Bourlat, Tanya Cheeke, Bálint Dima, Rein Drenkhan, Camila Duarte, Margarita Dueñas, Ursula Eberhardt, Hanna Friberg, Tobias G. Frøslev, Sigisfredo Garnica, József Geml, Masoomeh Ghobad-Nejhad … & Christian Wurzbacher
UNITE provides a unified way for delimiting, identifying, communicating, and working with DNA-based Species Hypotheses (SH). All fungal ITS sequences in the international nucleotide sequence databases are clustered to approximately the species level by applying a set of dynamic distance values (<0.5 - 3.0%). All species hypotheses are given a unique, stable name in the form of a DOI, and their taxonomic and ecological annotations are verified through distributed, web-based third-party annotation efforts. SHs are...

SH019917.07FU

Urmas Kõljalg, Kessy Abarenkov, R. Henrik Nilsson, Karl-Henrik Larsson, Anders Bjørnsgard Aas, Rachel Adams, Artur Alves, Joseph F. Ammirati, A. Elizabeth Arnold, Mohammad Bahram, Johan Bengtsson-Palme, Anna Berlin, Synnøve Botnen, Sarah Bourlat, Tanya Cheeke, Bálint Dima, Rein Drenkhan, Camila Duarte, Margarita Dueñas, Ursula Eberhardt, Hanna Friberg, Tobias G. Frøslev, Sigisfredo Garnica, József Geml, Masoomeh Ghobad-Nejhad … & Christian Wurzbacher
UNITE provides a unified way for delimiting, identifying, communicating, and working with DNA-based Species Hypotheses (SH). All fungal ITS sequences in the international nucleotide sequence databases are clustered to approximately the species level by applying a set of dynamic distance values (<0.5 - 3.0%). All species hypotheses are given a unique, stable name in the form of a DOI, and their taxonomic and ecological annotations are verified through distributed, web-based third-party annotation efforts. SHs are...

SH162146.07FU

Urmas Kõljalg, Kessy Abarenkov, R. Henrik Nilsson, Karl-Henrik Larsson, Anders Bjørnsgard Aas, Rachel Adams, Artur Alves, Joseph F. Ammirati, A. Elizabeth Arnold, Mohammad Bahram, Johan Bengtsson-Palme, Anna Berlin, Synnøve Botnen, Sarah Bourlat, Tanya Cheeke, Bálint Dima, Rein Drenkhan, Camila Duarte, Margarita Dueñas, Ursula Eberhardt, Hanna Friberg, Tobias G. Frøslev, Sigisfredo Garnica, József Geml, Masoomeh Ghobad-Nejhad … & Christian Wurzbacher
UNITE provides a unified way for delimiting, identifying, communicating, and working with DNA-based Species Hypotheses (SH). All fungal ITS sequences in the international nucleotide sequence databases are clustered to approximately the species level by applying a set of dynamic distance values (<0.5 - 3.0%). All species hypotheses are given a unique, stable name in the form of a DOI, and their taxonomic and ecological annotations are verified through distributed, web-based third-party annotation efforts. SHs are...

SH161668.07FU

Urmas Kõljalg, Kessy Abarenkov, R. Henrik Nilsson, Karl-Henrik Larsson, Anders Bjørnsgard Aas, Rachel Adams, Artur Alves, Joseph F. Ammirati, A. Elizabeth Arnold, Mohammad Bahram, Johan Bengtsson-Palme, Anna Berlin, Synnøve Botnen, Sarah Bourlat, Tanya Cheeke, Bálint Dima, Rein Drenkhan, Camila Duarte, Margarita Dueñas, Ursula Eberhardt, Hanna Friberg, Tobias G. Frøslev, Sigisfredo Garnica, József Geml, Masoomeh Ghobad-Nejhad … & Christian Wurzbacher
UNITE provides a unified way for delimiting, identifying, communicating, and working with DNA-based Species Hypotheses (SH). All fungal ITS sequences in the international nucleotide sequence databases are clustered to approximately the species level by applying a set of dynamic distance values (<0.5 - 3.0%). All species hypotheses are given a unique, stable name in the form of a DOI, and their taxonomic and ecological annotations are verified through distributed, web-based third-party annotation efforts. SHs are...

SH288569.07FU

Urmas Kõljalg, Kessy Abarenkov, R. Henrik Nilsson, Karl-Henrik Larsson, Anders Bjørnsgard Aas, Rachel Adams, Artur Alves, Joseph F. Ammirati, A. Elizabeth Arnold, Mohammad Bahram, Johan Bengtsson-Palme, Anna Berlin, Synnøve Botnen, Sarah Bourlat, Tanya Cheeke, Bálint Dima, Rein Drenkhan, Camila Duarte, Margarita Dueñas, Ursula Eberhardt, Hanna Friberg, Tobias G. Frøslev, Sigisfredo Garnica, József Geml, Masoomeh Ghobad-Nejhad … & Christian Wurzbacher
UNITE provides a unified way for delimiting, identifying, communicating, and working with DNA-based Species Hypotheses (SH). All fungal ITS sequences in the international nucleotide sequence databases are clustered to approximately the species level by applying a set of dynamic distance values (<0.5 - 3.0%). All species hypotheses are given a unique, stable name in the form of a DOI, and their taxonomic and ecological annotations are verified through distributed, web-based third-party annotation efforts. SHs are...

SH009371.07FU

Urmas Kõljalg, Kessy Abarenkov, R. Henrik Nilsson, Karl-Henrik Larsson, Anders Bjørnsgard Aas, Rachel Adams, Artur Alves, Joseph F. Ammirati, A. Elizabeth Arnold, Mohammad Bahram, Johan Bengtsson-Palme, Anna Berlin, Synnøve Botnen, Sarah Bourlat, Tanya Cheeke, Bálint Dima, Rein Drenkhan, Camila Duarte, Margarita Dueñas, Ursula Eberhardt, Hanna Friberg, Tobias G. Frøslev, Sigisfredo Garnica, József Geml, Masoomeh Ghobad-Nejhad … & Christian Wurzbacher
UNITE provides a unified way for delimiting, identifying, communicating, and working with DNA-based Species Hypotheses (SH). All fungal ITS sequences in the international nucleotide sequence databases are clustered to approximately the species level by applying a set of dynamic distance values (<0.5 - 3.0%). All species hypotheses are given a unique, stable name in the form of a DOI, and their taxonomic and ecological annotations are verified through distributed, web-based third-party annotation efforts. SHs are...

SH103811.07FU

Urmas Kõljalg, Kessy Abarenkov, R. Henrik Nilsson, Karl-Henrik Larsson, Anders Bjørnsgard Aas, Rachel Adams, Artur Alves, Joseph F. Ammirati, A. Elizabeth Arnold, Mohammad Bahram, Johan Bengtsson-Palme, Anna Berlin, Synnøve Botnen, Sarah Bourlat, Tanya Cheeke, Bálint Dima, Rein Drenkhan, Camila Duarte, Margarita Dueñas, Ursula Eberhardt, Hanna Friberg, Tobias G. Frøslev, Sigisfredo Garnica, József Geml, Masoomeh Ghobad-Nejhad … & Christian Wurzbacher
UNITE provides a unified way for delimiting, identifying, communicating, and working with DNA-based Species Hypotheses (SH). All fungal ITS sequences in the international nucleotide sequence databases are clustered to approximately the species level by applying a set of dynamic distance values (<0.5 - 3.0%). All species hypotheses are given a unique, stable name in the form of a DOI, and their taxonomic and ecological annotations are verified through distributed, web-based third-party annotation efforts. SHs are...

SH398018.07FU

Urmas Kõljalg, Kessy Abarenkov, R. Henrik Nilsson, Karl-Henrik Larsson, Anders Bjørnsgard Aas, Rachel Adams, Artur Alves, Joseph F. Ammirati, A. Elizabeth Arnold, Mohammad Bahram, Johan Bengtsson-Palme, Anna Berlin, Synnøve Botnen, Sarah Bourlat, Tanya Cheeke, Bálint Dima, Rein Drenkhan, Camila Duarte, Margarita Dueñas, Ursula Eberhardt, Hanna Friberg, Tobias G. Frøslev, Sigisfredo Garnica, József Geml, Masoomeh Ghobad-Nejhad … & Christian Wurzbacher
UNITE provides a unified way for delimiting, identifying, communicating, and working with DNA-based Species Hypotheses (SH). All fungal ITS sequences in the international nucleotide sequence databases are clustered to approximately the species level by applying a set of dynamic distance values (<0.5 - 3.0%). All species hypotheses are given a unique, stable name in the form of a DOI, and their taxonomic and ecological annotations are verified through distributed, web-based third-party annotation efforts. SHs are...

SH405730.07FU

Urmas Kõljalg, Kessy Abarenkov, R. Henrik Nilsson, Karl-Henrik Larsson, Anders Bjørnsgard Aas, Rachel Adams, Artur Alves, Joseph F. Ammirati, A. Elizabeth Arnold, Mohammad Bahram, Johan Bengtsson-Palme, Anna Berlin, Synnøve Botnen, Sarah Bourlat, Tanya Cheeke, Bálint Dima, Rein Drenkhan, Camila Duarte, Margarita Dueñas, Ursula Eberhardt, Hanna Friberg, Tobias G. Frøslev, Sigisfredo Garnica, József Geml, Masoomeh Ghobad-Nejhad … & Christian Wurzbacher
UNITE provides a unified way for delimiting, identifying, communicating, and working with DNA-based Species Hypotheses (SH). All fungal ITS sequences in the international nucleotide sequence databases are clustered to approximately the species level by applying a set of dynamic distance values (<0.5 - 3.0%). All species hypotheses are given a unique, stable name in the form of a DOI, and their taxonomic and ecological annotations are verified through distributed, web-based third-party annotation efforts. SHs are...

SH256243.07FU

Urmas Kõljalg, Kessy Abarenkov, R. Henrik Nilsson, Karl-Henrik Larsson, Anders Bjørnsgard Aas, Rachel Adams, Artur Alves, Joseph F. Ammirati, A. Elizabeth Arnold, Mohammad Bahram, Johan Bengtsson-Palme, Anna Berlin, Synnøve Botnen, Sarah Bourlat, Tanya Cheeke, Bálint Dima, Rein Drenkhan, Camila Duarte, Margarita Dueñas, Ursula Eberhardt, Hanna Friberg, Tobias G. Frøslev, Sigisfredo Garnica, József Geml, Masoomeh Ghobad-Nejhad … & Christian Wurzbacher
UNITE provides a unified way for delimiting, identifying, communicating, and working with DNA-based Species Hypotheses (SH). All fungal ITS sequences in the international nucleotide sequence databases are clustered to approximately the species level by applying a set of dynamic distance values (<0.5 - 3.0%). All species hypotheses are given a unique, stable name in the form of a DOI, and their taxonomic and ecological annotations are verified through distributed, web-based third-party annotation efforts. SHs are...

SH245340.07FU

Urmas Kõljalg, Kessy Abarenkov, R. Henrik Nilsson, Karl-Henrik Larsson, Anders Bjørnsgard Aas, Rachel Adams, Artur Alves, Joseph F. Ammirati, A. Elizabeth Arnold, Mohammad Bahram, Johan Bengtsson-Palme, Anna Berlin, Synnøve Botnen, Sarah Bourlat, Tanya Cheeke, Bálint Dima, Rein Drenkhan, Camila Duarte, Margarita Dueñas, Ursula Eberhardt, Hanna Friberg, Tobias G. Frøslev, Sigisfredo Garnica, József Geml, Masoomeh Ghobad-Nejhad … & Christian Wurzbacher
UNITE provides a unified way for delimiting, identifying, communicating, and working with DNA-based Species Hypotheses (SH). All fungal ITS sequences in the international nucleotide sequence databases are clustered to approximately the species level by applying a set of dynamic distance values (<0.5 - 3.0%). All species hypotheses are given a unique, stable name in the form of a DOI, and their taxonomic and ecological annotations are verified through distributed, web-based third-party annotation efforts. SHs are...

SH024226.07FU

Urmas Kõljalg, Kessy Abarenkov, R. Henrik Nilsson, Karl-Henrik Larsson, Anders Bjørnsgard Aas, Rachel Adams, Artur Alves, Joseph F. Ammirati, A. Elizabeth Arnold, Mohammad Bahram, Johan Bengtsson-Palme, Anna Berlin, Synnøve Botnen, Sarah Bourlat, Tanya Cheeke, Bálint Dima, Rein Drenkhan, Camila Duarte, Margarita Dueñas, Ursula Eberhardt, Hanna Friberg, Tobias G. Frøslev, Sigisfredo Garnica, József Geml, Masoomeh Ghobad-Nejhad … & Christian Wurzbacher
UNITE provides a unified way for delimiting, identifying, communicating, and working with DNA-based Species Hypotheses (SH). All fungal ITS sequences in the international nucleotide sequence databases are clustered to approximately the species level by applying a set of dynamic distance values (<0.5 - 3.0%). All species hypotheses are given a unique, stable name in the form of a DOI, and their taxonomic and ecological annotations are verified through distributed, web-based third-party annotation efforts. SHs are...

SH089094.07FU

Urmas Kõljalg, Kessy Abarenkov, R. Henrik Nilsson, Karl-Henrik Larsson, Anders Bjørnsgard Aas, Rachel Adams, Artur Alves, Joseph F. Ammirati, A. Elizabeth Arnold, Mohammad Bahram, Johan Bengtsson-Palme, Anna Berlin, Synnøve Botnen, Sarah Bourlat, Tanya Cheeke, Bálint Dima, Rein Drenkhan, Camila Duarte, Margarita Dueñas, Ursula Eberhardt, Hanna Friberg, Tobias G. Frøslev, Sigisfredo Garnica, József Geml, Masoomeh Ghobad-Nejhad … & Christian Wurzbacher
UNITE provides a unified way for delimiting, identifying, communicating, and working with DNA-based Species Hypotheses (SH). All fungal ITS sequences in the international nucleotide sequence databases are clustered to approximately the species level by applying a set of dynamic distance values (<0.5 - 3.0%). All species hypotheses are given a unique, stable name in the form of a DOI, and their taxonomic and ecological annotations are verified through distributed, web-based third-party annotation efforts. SHs are...

SH150073.07FU

Urmas Kõljalg, Kessy Abarenkov, R. Henrik Nilsson, Karl-Henrik Larsson, Anders Bjørnsgard Aas, Rachel Adams, Artur Alves, Joseph F. Ammirati, A. Elizabeth Arnold, Mohammad Bahram, Johan Bengtsson-Palme, Anna Berlin, Synnøve Botnen, Sarah Bourlat, Tanya Cheeke, Bálint Dima, Rein Drenkhan, Camila Duarte, Margarita Dueñas, Ursula Eberhardt, Hanna Friberg, Tobias G. Frøslev, Sigisfredo Garnica, József Geml, Masoomeh Ghobad-Nejhad … & Christian Wurzbacher
UNITE provides a unified way for delimiting, identifying, communicating, and working with DNA-based Species Hypotheses (SH). All fungal ITS sequences in the international nucleotide sequence databases are clustered to approximately the species level by applying a set of dynamic distance values (<0.5 - 3.0%). All species hypotheses are given a unique, stable name in the form of a DOI, and their taxonomic and ecological annotations are verified through distributed, web-based third-party annotation efforts. SHs are...

SH143404.07FU

Urmas Kõljalg, Kessy Abarenkov, R. Henrik Nilsson, Karl-Henrik Larsson, Anders Bjørnsgard Aas, Rachel Adams, Artur Alves, Joseph F. Ammirati, A. Elizabeth Arnold, Mohammad Bahram, Johan Bengtsson-Palme, Anna Berlin, Synnøve Botnen, Sarah Bourlat, Tanya Cheeke, Bálint Dima, Rein Drenkhan, Camila Duarte, Margarita Dueñas, Ursula Eberhardt, Hanna Friberg, Tobias G. Frøslev, Sigisfredo Garnica, József Geml, Masoomeh Ghobad-Nejhad … & Christian Wurzbacher
UNITE provides a unified way for delimiting, identifying, communicating, and working with DNA-based Species Hypotheses (SH). All fungal ITS sequences in the international nucleotide sequence databases are clustered to approximately the species level by applying a set of dynamic distance values (<0.5 - 3.0%). All species hypotheses are given a unique, stable name in the form of a DOI, and their taxonomic and ecological annotations are verified through distributed, web-based third-party annotation efforts. SHs are...

SH023237.07FU

Urmas Kõljalg, Kessy Abarenkov, R. Henrik Nilsson, Karl-Henrik Larsson, Anders Bjørnsgard Aas, Rachel Adams, Artur Alves, Joseph F. Ammirati, A. Elizabeth Arnold, Mohammad Bahram, Johan Bengtsson-Palme, Anna Berlin, Synnøve Botnen, Sarah Bourlat, Tanya Cheeke, Bálint Dima, Rein Drenkhan, Camila Duarte, Margarita Dueñas, Ursula Eberhardt, Hanna Friberg, Tobias G. Frøslev, Sigisfredo Garnica, József Geml, Masoomeh Ghobad-Nejhad … & Christian Wurzbacher
UNITE provides a unified way for delimiting, identifying, communicating, and working with DNA-based Species Hypotheses (SH). All fungal ITS sequences in the international nucleotide sequence databases are clustered to approximately the species level by applying a set of dynamic distance values (<0.5 - 3.0%). All species hypotheses are given a unique, stable name in the form of a DOI, and their taxonomic and ecological annotations are verified through distributed, web-based third-party annotation efforts. SHs are...

SH446187.07FU

Urmas Kõljalg, Kessy Abarenkov, R. Henrik Nilsson, Karl-Henrik Larsson, Anders Bjørnsgard Aas, Rachel Adams, Artur Alves, Joseph F. Ammirati, A. Elizabeth Arnold, Mohammad Bahram, Johan Bengtsson-Palme, Anna Berlin, Synnøve Botnen, Sarah Bourlat, Tanya Cheeke, Bálint Dima, Rein Drenkhan, Camila Duarte, Margarita Dueñas, Ursula Eberhardt, Hanna Friberg, Tobias G. Frøslev, Sigisfredo Garnica, József Geml, Masoomeh Ghobad-Nejhad … & Christian Wurzbacher
UNITE provides a unified way for delimiting, identifying, communicating, and working with DNA-based Species Hypotheses (SH). All fungal ITS sequences in the international nucleotide sequence databases are clustered to approximately the species level by applying a set of dynamic distance values (<0.5 - 3.0%). All species hypotheses are given a unique, stable name in the form of a DOI, and their taxonomic and ecological annotations are verified through distributed, web-based third-party annotation efforts. SHs are...

SH008934.07FU

Urmas Kõljalg, Kessy Abarenkov, R. Henrik Nilsson, Karl-Henrik Larsson, Anders Bjørnsgard Aas, Rachel Adams, Artur Alves, Joseph F. Ammirati, A. Elizabeth Arnold, Mohammad Bahram, Johan Bengtsson-Palme, Anna Berlin, Synnøve Botnen, Sarah Bourlat, Tanya Cheeke, Bálint Dima, Rein Drenkhan, Camila Duarte, Margarita Dueñas, Ursula Eberhardt, Hanna Friberg, Tobias G. Frøslev, Sigisfredo Garnica, József Geml, Masoomeh Ghobad-Nejhad … & Christian Wurzbacher
UNITE provides a unified way for delimiting, identifying, communicating, and working with DNA-based Species Hypotheses (SH). All fungal ITS sequences in the international nucleotide sequence databases are clustered to approximately the species level by applying a set of dynamic distance values (<0.5 - 3.0%). All species hypotheses are given a unique, stable name in the form of a DOI, and their taxonomic and ecological annotations are verified through distributed, web-based third-party annotation efforts. SHs are...

SH461947.07FU

Urmas Kõljalg, Kessy Abarenkov, R. Henrik Nilsson, Karl-Henrik Larsson, Anders Bjørnsgard Aas, Rachel Adams, Artur Alves, Joseph F. Ammirati, A. Elizabeth Arnold, Mohammad Bahram, Johan Bengtsson-Palme, Anna Berlin, Synnøve Botnen, Sarah Bourlat, Tanya Cheeke, Bálint Dima, Rein Drenkhan, Camila Duarte, Margarita Dueñas, Ursula Eberhardt, Hanna Friberg, Tobias G. Frøslev, Sigisfredo Garnica, József Geml, Masoomeh Ghobad-Nejhad … & Christian Wurzbacher
UNITE provides a unified way for delimiting, identifying, communicating, and working with DNA-based Species Hypotheses (SH). All fungal ITS sequences in the international nucleotide sequence databases are clustered to approximately the species level by applying a set of dynamic distance values (<0.5 - 3.0%). All species hypotheses are given a unique, stable name in the form of a DOI, and their taxonomic and ecological annotations are verified through distributed, web-based third-party annotation efforts. SHs are...

SH379417.07FU

Urmas Kõljalg, Kessy Abarenkov, R. Henrik Nilsson, Karl-Henrik Larsson, Anders Bjørnsgard Aas, Rachel Adams, Artur Alves, Joseph F. Ammirati, A. Elizabeth Arnold, Mohammad Bahram, Johan Bengtsson-Palme, Anna Berlin, Synnøve Botnen, Sarah Bourlat, Tanya Cheeke, Bálint Dima, Rein Drenkhan, Camila Duarte, Margarita Dueñas, Ursula Eberhardt, Hanna Friberg, Tobias G. Frøslev, Sigisfredo Garnica, József Geml, Masoomeh Ghobad-Nejhad … & Christian Wurzbacher
UNITE provides a unified way for delimiting, identifying, communicating, and working with DNA-based Species Hypotheses (SH). All fungal ITS sequences in the international nucleotide sequence databases are clustered to approximately the species level by applying a set of dynamic distance values (<0.5 - 3.0%). All species hypotheses are given a unique, stable name in the form of a DOI, and their taxonomic and ecological annotations are verified through distributed, web-based third-party annotation efforts. SHs are...

SH419272.07FU

Urmas Kõljalg, Kessy Abarenkov, R. Henrik Nilsson, Karl-Henrik Larsson, Anders Bjørnsgard Aas, Rachel Adams, Artur Alves, Joseph F. Ammirati, A. Elizabeth Arnold, Mohammad Bahram, Johan Bengtsson-Palme, Anna Berlin, Synnøve Botnen, Sarah Bourlat, Tanya Cheeke, Bálint Dima, Rein Drenkhan, Camila Duarte, Margarita Dueñas, Ursula Eberhardt, Hanna Friberg, Tobias G. Frøslev, Sigisfredo Garnica, József Geml, Masoomeh Ghobad-Nejhad … & Christian Wurzbacher
UNITE provides a unified way for delimiting, identifying, communicating, and working with DNA-based Species Hypotheses (SH). All fungal ITS sequences in the international nucleotide sequence databases are clustered to approximately the species level by applying a set of dynamic distance values (<0.5 - 3.0%). All species hypotheses are given a unique, stable name in the form of a DOI, and their taxonomic and ecological annotations are verified through distributed, web-based third-party annotation efforts. SHs are...

Registration Year

  • 2015
    487,442

Resource Types

  • Dataset
    487,199