640,279 Works

03830008-eng.tab

Andrei A Levchenko, Raphael Aure & Philip Saure
:unav

8.5. IPE Master Merge Version 3.0.R

Benjamin A.T. Graham & Jacob R. Tucker
:unav

Pop_logical_bounds.xlsx

Timothy Fraser & Andrew Chapman
Used to tell Amelia function in R which variables to multiply impute for sample-population t-tests.

DC 2016 President.tab

Dave Leip
2016 President General Precinct

README.txt

Matthew Gibson
Instructions and description of replication files.

other-data.tar.gz

Matthew Gibson
:unav

sts_inppd_m_(outdated2011).txt

Andrei A Levchenko, Raphael Aure & Philip Saure
:unav

Intercountry Input-Output Table for 2011.csv

Andrei A Levchenko, Raphael Aure & Philip Saure
:unav

DS_PPI_IN_m.tab

Andrei A Levchenko, Raphael Aure & Philip Saure
:unav

Pres_Elec_Data_2004_PrimD.xls.zip

Dave Leip
County-level data for 2004 Presidential election.

secc_9_11.7z

Gaurav Sood & Suriyan Laohaprapanon
:unav

Nonattainment.tar.gz

Matthew Gibson
EPA "Green Book" county nonattainment data

10_Figure_A4_1.do

Matthias Mader
:unav

Intercountry Input-Output Table for 2006.csv

Andrei A Levchenko, Raphael Aure & Philip Saure
:unav

Replication Data for: Keeping It Simple: Financial Literacy and Rules of Thumb

Alejandro Drexler, Greg Fischer & Antoinette Schoar
Micro-entrepreneurs often lack the financial literacy required to make important financial decisions. We conducted a randomized evaluation with a bank in the Dominican Republic to compare the impact of two distinct programs: standard accounting training versus a simplified, rule-of-thumb training that taught basic financial heuristics. The rule-of-thumb training significantly improved firms' financial practices, objective reporting quality, and revenues. For micro-entrepreneurs with lower skills or poor initial financial practices, the impact of the rule-of-thumb training was...

Rec_Poromya_rostrata_zuec2243.rar

Fabrizio M. Machado, Flávio D. Passos & Gonzalo Giribet
:unav

03_Figure2.do

Matthias Mader
:unav

HI 2016 President.tab

Dave Leip
2016 President General Precinct

NutritionFoodTrees.7z

Stepha McMullin, Brenda Wekesa, Mary Ngendo & Ken Njogu
Food Trees All Data: Laikipia, Tharaka-nithi, Kitui and Kwale

irishtimes-date-text.v1.tab

Rohit Kulkarni
:unav

US_HistCounties_Gen001.END_N.atx

Shom Mazumder
(data) counties shape file

FoodTreesData.7z

Ken Njogu, Mary Ngendo, Agnes Gachuiri, Eric Ngethe & Stepha McMullin
Food Trees Datasets from Laikipia, Tharaka-Nithi, Kitui and Kwale

deepdrug3d.h5

Michal Brylinski
Deep learning model trained to classify ATP and heme binding pockets

deepdrug3d_voxel_data.tar.gz

Michal Brylinski
Voxel data to train deep learning model to classify ATP and heme binding pockets

codebook-cces-final-rds.pdf

Shom Mazumder
(codebook) cces data

Registration Year

  • 2020
    146,623
  • 2019
    188,220
  • 2018
    290,725
  • 2017
    2,903
  • 2016
    3,464
  • 2015
    6,093
  • 2014
    2,047
  • 2013
    201

Resource Types

  • Dataset
    634,090
  • Text
    6,185