228 Works

Verification check of invariance with respect to atom permutations (permutation symmetry) v002

Check whether a model is invariant with respect to atom permutations that preserve species, i.e. swapping any two atoms with the same species must not change the energy or forces. This must be true for all models. The check is performed for a randomly distorted non-periodic diamond cube base structure. Separate configurations are tested for each species supported by the model, as well as one containing a random distribution of all species. The energy and...

A dropout uncertainty neural network (DUNN) model driver v000

A dropout uncertainty neural network (DUNN) potential model driver, which supports running in both fully-connected mode and dropout mode. The DUNN can be used easily to quantify the uncertainty in atomistic simulations and determine the transferability of potential.

Dropout uncertainty neural network (DUNN) potential for condensed-matter carbon systems developed by Wen and Tadmor (2019) v000

A dropout uncertainty neural network (DUNN) potential for condensed-matter carbon systems with a dropout ratio of 0.1. This is an ensemble model consisting of 100 different network structures obtained by dropout. Before dropout, there are three hidden layers each containing 128 neurons; each neuron in the hidden layers has probability 0.1 of being removed from the network. By default, the model will run in the 'mean' mode where the output energy, forces, and virial are...

EMT potential for Al developed by Jacobsen, Stoltze, and Norskov (1996) v000

Jakob Schi√łtz
Effective Medium Theory (EMT) model based on the EMT implementation in ASAP (https://wiki.fysik.dtu.dk/asap). Effective Medium Theory is a many-body potential of the same class as Embedded Atom Method, Finnis-Sinclair etc. The main term in the energy per atom is the local density of atoms. The functional form implemented here is that of Ref. 1. The principles behind EMT are described in Refs. 2 and 3 (with 2 being the more detailed and 3 being the...

Three-body bond-order potential by Khor and Das Sarma (1988) v000

Based on the idea that bonding energies of many substances can be modeled by pairwise interactions moderated by the local environment, we propose a new universal interatomic potential for tetrahedrally bonded materials. This potential, which uses very few parameters, should be useful, particularly for surface studies.

Three-body cluster potential for Si by Khor and Das Sarma (1988) v000

Based on the idea that bonding energies of many substances can be modeled by pairwise interactions moderated by the local environment, we propose a new universal interatomic potential for tetrahedrally bonded materials. We obtain two basic relationships linking equilibrium interatomic distances and cohesive energies to the coordination number for a large range of phases of silicon. The relationships are also valid for germanium and carbon, covering, in the latter case, double and triple carbon-carbon bonds,...

Three-body cluster potential for Si by Biswas and Hamann (1987) v000

A theory of classical two- and three-body interatomic potentials is developed. The ability of the classical potentials to model quantum-mechanical local-density-functional calculations for a wide range of silicon structures is explored. In developing classical models it was found to be necessary to perform new local-density-functional calculations for self-interstitial and layered silicon structures. The potential was derived from fits and tests to energies of bulk, surface, layered, and self-interstitial structures and is designed for tetrahedral silicon...

Morse potential (shifted) for Ni by Girifalco and Weizer (1959) using a low-accuracy cutoff distance v003

Ryan S. Elliott
This is a Ni Morse Model Parameterization by Girifalco and Weizer (1959) using a low-accuracy cutoff distance. The Morse parameters were calculated using experimental values for the energy of vaporization, the lattice constant, and the compressibility. The equation of state and the elastic constants which were computed using the Morse parameters, agreed with experiment for both face-centered and body-centered cubic metals. All stability conditions were also satisfied for both the face-centered and the body-centered metals....

Morse potential (shifted) for Cu by Girifalco and Weizer (1959) using a medium-accuracy cutoff distance v003

Ryan S. Elliott
This is a Cu Morse Model Parameterization by Girifalco and Weizer (1959) using a medium-accuracy cutoff distance. The Morse parameters were calculated using experimental values for the energy of vaporization, the lattice constant, and the compressibility. The equation of state and the elastic constants which were computed using the Morse parameters, agreed with experiment for both face-centered and body-centered cubic metals. All stability conditions were also satisfied for both the face-centered and the body-centered metals....

Morse potential (shifted) for W by Girifalco and Weizer (1959) using a low-accuracy cutoff distance v003

Ryan S. Elliott
This is a W Morse Model Parameterization by Girifalco and Weizer (1959) using a low-accuracy cutoff distance. The Morse parameters were calculated using experimental values for the energy of vaporization, the lattice constant, and the compressibility. The equation of state and the elastic constants which were computed using the Morse parameters, agreed with experiment for both face-centered and body-centered cubic metals. All stability conditions were also satisfied for both the face-centered and the body-centered metals....

Morse potential (shifted) for Ni by Girifalco and Weizer (1959) using a high-accuracy cutoff distance v003

Ryan S. Elliott
This is a Ni Morse Model Parameterization by Girifalco and Weizer (1959) using a high-accuracy cutoff distance. The Morse parameters were calculated using experimental values for the energy of vaporization, the lattice constant, and the compressibility. The equation of state and the elastic constants which were computed using the Morse parameters, agreed with experiment for both face-centered and body-centered cubic metals. All stability conditions were also satisfied for both the face-centered and the body-centered metals....

Morse potential (shifted) for Ni by Girifalco and Weizer (1959) using a medium-accuracy cutoff distance v003

Ryan S. Elliott
This is a Ni Morse Model Parameterization by Girifalco and Weizer (1959) using a medium-accuracy cutoff distance. The Morse parameters were calculated using experimental values for the energy of vaporization, the lattice constant, and the compressibility. The equation of state and the elastic constants which were computed using the Morse parameters, agreed with experiment for both face-centered and body-centered cubic metals. All stability conditions were also satisfied for both the face-centered and the body-centered metals....

Morse potential (shifted) for Rb by Girifalco and Weizer (1959) using a medium-accuracy cutoff distance v003

Ryan S. Elliott
This is a Rb Morse Model Parameterization by Girifalco and Weizer (1959) using a medium-accuracy cutoff distance. The Morse parameters were calculated using experimental values for the energy of vaporization, the lattice constant, and the compressibility. The equation of state and the elastic constants which were computed using the Morse parameters, agreed with experiment for both face-centered and body-centered cubic metals. All stability conditions were also satisfied for both the face-centered and the body-centered metals....

Morse potential (shifted) for Sr by Girifalco and Weizer (1959) using a medium-accuracy cutoff distance v003

Ryan S. Elliott
This is a Sr Morse Model Parameterization by Girifalco and Weizer (1959) using a medium-accuracy cutoff distance. The Morse parameters were calculated using experimental values for the energy of vaporization, the lattice constant, and the compressibility. The equation of state and the elastic constants which were computed using the Morse parameters, agreed with experiment for both face-centered and body-centered cubic metals. All stability conditions were also satisfied for both the face-centered and the body-centered metals....

Morse potential (shifted) for Na by Girifalco and Weizer (1959) using a high-accuracy cutoff distance v003

Ryan S. Elliott
This is a Na Morse Model Parameterization by Girifalco and Weizer (1959) using a high-accuracy cutoff distance. The Morse parameters were calculated using experimental values for the energy of vaporization, the lattice constant, and the compressibility. The equation of state and the elastic constants which were computed using the Morse parameters, agreed with experiment for both face-centered and body-centered cubic metals. All stability conditions were also satisfied for both the face-centered and the body-centered metals....

Morse potential (shifted) for Rb by Girifalco and Weizer (1959) using a low-accuracy cutoff distance v003

Ryan S. Elliott
This is a Rb Morse Model Parameterization by Girifalco and Weizer (1959) using a low-accuracy cutoff distance. The Morse parameters were calculated using experimental values for the energy of vaporization, the lattice constant, and the compressibility. The equation of state and the elastic constants which were computed using the Morse parameters, agreed with experiment for both face-centered and body-centered cubic metals. All stability conditions were also satisfied for both the face-centered and the body-centered metals....

Morse potential (shifted) for Pb by Girifalco and Weizer (1959) using a high-accuracy cutoff distance v003

Ryan S. Elliott
This is a Pb Morse Model Parameterization by Girifalco and Weizer (1959) using a high-accuracy cutoff distance. The Morse parameters were calculated using experimental values for the energy of vaporization, the lattice constant, and the compressibility. The equation of state and the elastic constants which were computed using the Morse parameters, agreed with experiment for both face-centered and body-centered cubic metals. All stability conditions were also satisfied for both the face-centered and the body-centered metals....

Morse potential (shifted) for Ca by Girifalco and Weizer (1959) using a low-accuracy cutoff distance v003

Ryan S. Elliott
This is a Ca Morse Model Parameterization by Girifalco and Weizer (1959) using a low-accuracy cutoff distance. The Morse parameters were calculated using experimental values for the energy of vaporization, the lattice constant, and the compressibility. The equation of state and the elastic constants which were computed using the Morse parameters, agreed with experiment for both face-centered and body-centered cubic metals. All stability conditions were also satisfied for both the face-centered and the body-centered metals....

Morse potential (shifted) for Mo by Girifalco and Weizer (1959) using a medium-accuracy cutoff distance v003

Ryan S. Elliott
This is a Mo Morse Model Parameterization by Girifalco and Weizer (1959) using a medium-accuracy cutoff distance. The Morse parameters were calculated using experimental values for the energy of vaporization, the lattice constant, and the compressibility. The equation of state and the elastic constants which were computed using the Morse parameters, agreed with experiment for both face-centered and body-centered cubic metals. All stability conditions were also satisfied for both the face-centered and the body-centered metals....

Morse potential (shifted) for Al by Girifalco and Weizer (1959) using a medium-accuracy cutoff distance v003

Ryan S. Elliott
This is a Al Morse Model Parameterization by Girifalco and Weizer (1959) using a medium-accuracy cutoff distance. The Morse parameters were calculated using experimental values for the energy of vaporization, the lattice constant, and the compressibility. The equation of state and the elastic constants which were computed using the Morse parameters, agreed with experiment for both face-centered and body-centered cubic metals. All stability conditions were also satisfied for both the face-centered and the body-centered metals....

Morse potential (shifted) for Mo by Girifalco and Weizer (1959) using a low-accuracy cutoff distance v003

Ryan S. Elliott
This is a Mo Morse Model Parameterization by Girifalco and Weizer (1959) using a low-accuracy cutoff distance. The Morse parameters were calculated using experimental values for the energy of vaporization, the lattice constant, and the compressibility. The equation of state and the elastic constants which were computed using the Morse parameters, agreed with experiment for both face-centered and body-centered cubic metals. All stability conditions were also satisfied for both the face-centered and the body-centered metals....

Morse potential (shifted) for Cs by Girifalco and Weizer (1959) using a low-accuracy cutoff distance v003

Ryan S. Elliott
This is a Cs Morse Model Parameterization by Girifalco and Weizer (1959) using a low-accuracy cutoff distance. The Morse parameters were calculated using experimental values for the energy of vaporization, the lattice constant, and the compressibility. The equation of state and the elastic constants which were computed using the Morse parameters, agreed with experiment for both face-centered and body-centered cubic metals. All stability conditions were also satisfied for both the face-centered and the body-centered metals....

Morse potential (shifted) for Pb by Girifalco and Weizer (1959) using a medium-accuracy cutoff distance v003

Ryan S. Elliott
This is a Pb Morse Model Parameterization by Girifalco and Weizer (1959) using a medium-accuracy cutoff distance. The Morse parameters were calculated using experimental values for the energy of vaporization, the lattice constant, and the compressibility. The equation of state and the elastic constants which were computed using the Morse parameters, agreed with experiment for both face-centered and body-centered cubic metals. All stability conditions were also satisfied for both the face-centered and the body-centered metals....

Morse potential (shifted) for Ag by Girifalco and Weizer (1959) using a low-accuracy cutoff distance v003

Ryan S. Elliott
This is a Ag Morse Model Parameterization by Girifalco and Weizer using a low-accuracy cutoff distance. The Morse parameters were calculated using experimental values for the energy of vaporization, the lattice constant, and the compressibility. The equation of state and the elastic constants which were computed using the Morse parameters, agreed with experiment for both face-centered and body-centered cubic metals. All stability conditions were also satisfied for both the face-centered and the body-centered metals. This...

LAMMPS Gao-Weber potential for Si-C developed by Gao and Weber (2002) v000

Ronald E. Miller
Defect energetics in silicon carbide (SiC) have been widely studied using Tersoff potentials, but these potentials do not provide a good description of interstitial properties. In the present work, an empirical many-body interatomic potential is developed by fitting to various equilibrium properties and stable defect configurations in bulk SiC, using a lattice relaxation fitting approach. This parameterized potential has been used to calculate defect formation energies and to determine the most stable configurations for interstitials...

Registration Year

  • 2019
    228

Resource Types

  • Software
    228