High-dimensional expansion and crossing numbers of simplicial complexes

Pascal Wild
In this dissertation we study coboundary expansion of simplicial complex with a view of giving geometric applications. Our main novel tool is an equivariant version of Gromov's celebrated Topological Overlap Theorem. The equivariant topological overlap theorem leads to various geometric applications including a quantitative non-embeddability result for sufficiently thick buildings (which partially resolves a conjecture of Tancer and Vorwerk) and an improved lower bound on the pair-crossing number of (bounded degree) expander graphs. Additionally, we...
This data repository is not currently reporting usage information. For information on how your repository can submit usage information, please see our documentation.