О наилучшем полиномиальном приближении функций в весовом пространстве Бергмана

М.Р. Лангаршоев
Задача нахождения точной оценки величины наилучшего приближения $E_{n-1}(f)_{p},$ $1\leq p\leq\infty,$ через усредненную величину модуля непрерывности и модуля гладкости самой функции и ее соответствующих производных является одной из интересных задач теории приближений. В свое время Н. П. Корнейчук рассмотрел эту задачу для класса $2\pi$-периодических функций $f(x)$ с выпуклым модулем непрерывности $\omega(f^{\prime}, t)$ в метрике пространства непрерывных функций $C[0, 2\pi].$ Аналогичную задачу без предположения выпуклости модуля непрерывности граничных значений аналитических в круге функций в пространстве Харди $H_{p},$...
This data center is not currently reporting usage information. For information on how your repository can submit usage information, please see our Documentation.