Characterising and understanding Au-hyperdoped Si for sub-band gap optical absorption

Wenjie Yang
The unparalleled technological maturity of silicon (Si) can be exploited to develop CMOS-compatible optoelectronics such as photodetectors and imaging arrays. However, the low-attenuation wavelengths commonly used in fibre-optics (up to 1650 nm) fall below the 1.12 eV band gap of Si (efficient absorption only occurs at wavelengths less than 1100 nm), thus requiring the realisation of sub-band gap photoresponse. A promising method to achieve this is to add an intermediate band within the band gap...
This data repository is not currently reporting usage information. For information on how your repository can submit usage information, please see our documentation.