Tight Upper Bounds for Streett and Parity Complementation

Yang Cai & Ting Zhang
Complementation of finite automata on infinite words is not only a fundamental problem in automata theory, but also serves as a cornerstone for solving numerous decision problems in mathematical logic, model-checking, program analysis and verification. For Streett complementation, a significant gap exists between the current lower bound 2^{Omega(n*log(n*k))} and upper bound 2^{O(n*k*log(n*k))}, where n is the state size, k is the number of Streett pairs, and k can be as large as 2^{n}. Determining the...