Asymptotically Optimal Lower Bounds on the NIH-Multi-Party Information Complexity of the AND-Function and Disjointness

Andre Gronemeier
Here we prove an asymptotically optimal lower bound on the information complexity of the $k$-party disjointness function with the unique intersection promise, an important special case of the well known disjointness problem, and the AND$_k$-function in the number in the hand model. Our $\Omega(n/k)$ bound for disjointness improves on an earlier $\Omega(n/(k \log k))$ bound by Chakrabarti {\it et al.}~(2003), who obtained an asymptotically tight lower bound for one-way protocols, but failed to do so...