Bounds on the maximum multiplicity of some common geometric graphs

Adrian Dumitrescu, Andre Schulz, Adam Sheffer & Csaba D. Toth
We obtain new lower and upper bounds for the maximum multiplicity of some weighted, and respectively non-weighted, common geometric graphs drawn on $n$ points in the plane in general position (with no three points collinear): perfect matchings, spanning trees, spanning cycles (tours), and triangulations. (i) We present a new lower bound construction for the maximum number of triangulations a set of $n$ points in general position can have. In particular, we show that a generalized...