On the computational complexity of Ham-Sandwich cuts, Helly sets, and related problems

Christian Knauer, Hans Raj Tiwary & Daniel Werner
We study several canonical decision problems arising from some well-known theorems from combinatorial geometry. Among others, we show that computing the minimum size of a Caratheodory set and a Helly set and certain decision versions of the hs cut problem are W[1]-hard (and NP-hard) if the dimension is part of the input. This is done by fpt-reductions (which are actually ptime-reductions) from the d-Sum problem. Our reductions also imply that the problems we consider cannot...