Algorithmic Meta Theorems for Circuit Classes of Constant and Logarithmic Depth

Michael Elberfeld, Andreas Jakoby & Till Tantau
An algorithmic meta theorem for a logic and a class C of structures states that all problems expressible in this logic can be solved efficiently for inputs from $C$. The prime example is Courcelle's Theorem, which states that monadic second-order (MSO) definable problems are linear-time solvable on graphs of bounded tree width. We contribute new algorithmic meta theorems, which state that MSO-definable problems are (a) solvable by uniform constant-depth circuit families (AC0 for decision problems...