Trimming of Graphs, with Application to Point Labeling

Thomas Erlebach, Torben Hagerup, Klaus Jansen, Moritz Minzlaff & Alexander Wolff
For $t,g>0$, a vertex-weighted graph of total weight $W$ is $(t,g)$-trimmable if it contains a vertex-induced subgraph of total weight at least $(1-1/t)W$ and with no simple path of more than $g$ edges. A family of graphs is trimmable if for each constant $t>0$, there is a constant $g=g(t)$ such that every vertex-weighted graph in the family is $(t,g)$-trimmable. We show that every family of graphs of bounded domino treewidth is trimmable. This implies that...
This data center is not currently reporting usage information. For information on how your repository can submit usage information, please see our documentation.
We found no citations for this text. For information on how to provide citation information, please see our documentation.