Alternation-Trading Proofs, Linear Programming, and Lower Bounds

Ryan Williams
A fertile area of recent research has demonstrated concrete polynomial time lower bounds for solving natural hard problems on restricted computational models. Among these problems are Satisfiability, Vertex Cover, Hamilton Path, $\text{MOD}_6\text{-SAT}$, Majority-of-Majority-SAT, and Tautologies, to name a few. The proofs of these lower bounds follow a certain proof-by-contradiction strategy that we call {\em alternation-trading}. An important open problem is to determine how powerful such proofs can possibly be. We propose a methodology for studying...
This data center is not currently reporting usage information. For information on how your repository can submit usage information, please see our documentation.
We found no citations for this text. For information on how to provide citation information, please see our documentation.