Space Complexity of Perfect Matching in Bounded Genus Bipartite Graphs

Samir Datta, Raghav Kulkarni, Raghunath Tewari & N. Variyam Vinodchandran
We investigate the space complexity of certain perfect matching problems over bipartite graphs embedded on surfaces of constant genus (orientable or non-orientable). We show that the problems of deciding whether such graphs have (1) a perfect matching or not and (2) a unique perfect matching or not, are in the logspace complexity class SPL. Since SPL is contained in the logspace counting classes oplus L (in fact in mod_k for all k >= 2), C=L,...
This data center is not currently reporting usage information. For information on how your repository can submit usage information, please see our documentation.
We found no citations for this text. For information on how to provide citation information, please see our documentation.