3 Works

Data from: Sex chromosome turnover contributes to genomic divergence between incipient stickleback species

Kohta Yoshida, Takashi Makino, Katsushi Yamaguchi, Shuji Shigenobu, Mitsuyasu Hasebe, Masakado Kawata, Manabu Kume, Seiichi Mori, Catherine L. Peichel, Atsushi Toyoda, Asao Fujiyama & Jun Kitano
Sex chromosomes turn over rapidly in some taxonomic groups, where closely related species have different sex chromosomes. Although there are many examples of sex chromosome turnover, we know little about the functional roles of sex chromosome turnover in phenotypic diversification and genomic evolution. The sympatric pair of Japanese threespine stickleback (Gasterosteus aculeatus) provides an excellent system to address these questions: the Japan Sea species has a neo-sex chromosome system resulting from a fusion between an...

Accumulation of deleterious mutations in landlocked threespine stickleback populations

Jun Kitano, Kohta Yoshida, Mark Ravinet, Takashi Makino, Atsushi Toyoda, Tomoyuki Kokita & Seiichi Mori
Colonization of new habitats often reduces population sizes and may result in the accumulation of deleterious mutations by genetic drift. Compared to the genomic basis for adaptation to new environments, genome-wide analysis of deleterious mutations in isolated populations remains limited. In the present study, we investigated the accumulation of deleterious mutations in five endangered freshwater populations of threespine stickleback (Gasterosteus aculeatus) in the central part of the mainland of Japan. Using whole genome resequencing data,...

Data from: A key metabolic gene for recurrent freshwater colonization and radiation in fishes

Asano Ishikawa, Naoki Kabeya, Koki Ikeya, Ryo Kakioka, Jennifer N. Cech, Naoki Osada, Miguel C. Leal, Jun Inoue, Manabu Kume, Atsushi Toyoda, Ayumi Tezuka, Atsushi J. Nagano, Yo Y. Yamasaki, Yuto Suzuki, Tomoyuki Kokita, Hiroshi Takahashi, Kay Lucek, David Marques, Yusuke Takehana, Kiyoshi Naruse, Seiichi Mori, Oscar Monroig, Nemiah Ladd, Carsten J. Schubert, Blake Matthews … & Jun Kitano
Colonization of new ecological niches has triggered large adaptive radiations. Although some lineages have made use of such opportunities, not all do so. The factors causing this variation among lineages are largely unknown. Here, we show that deficiency in docosahexaenoic acid (DHA), an essential ω-3 fatty acid, can constrain freshwater colonization by marine fishes. Our genomic analyses revealed multiple independent duplications of the fatty acid desaturase gene Fads2 in stickleback lineages that subsequently colonized and...

Registration Year

  • 2020
    1
  • 2019
    1
  • 2014
    1

Resource Types

  • Dataset
    3

Affiliations

  • Gifu Kyoritsu University
    3
  • National Institute of Genetics
    3
  • Fred Hutchinson Cancer Research Center
    2
  • Tohoku University
    2
  • Fukui Prefectural University
    2
  • National Institute for Basic Biology
    2
  • Swiss Federal Institute of Aquatic Science and Technology
    1
  • Ryukoku University
    1
  • Hokkaido University
    1
  • Spanish National Research Council
    1