28 Works

Data from: Plastic responses to competition: does bacteriocin production increase in the presence of nonself competitors?

Amrita Bhattacharya, Hannah Tae‐Young Pak, Farrah Bashey & Hannah Tae-Young Pak
Anticompetitor traits such as the production of allelopathic toxins can confer significant competitive benefits but are often costly to produce. Evolution of these traits may be facilitated by environment‐specific induction; however, the extent to which costly anticompetitor traits are induced by competitors is not well explored. Here, we addressed this question using bacteriocins, which are highly specific, proteinaceous anticompetitor toxins, produced by most lineages of bacteria and archaea. We tested the prediction that bacteriocin production...

Data from: Parasite rearing and infection temperatures jointly influence disease transmission and shape seasonality of epidemics

Marta S. Shocket, Daniela Vergara, Andrew J. Sickbert, Jason M. Walsman, Alexander T. Strauss, Jessica L. Hite, Meghan A. Duffy, Carla E. Cáceres & Spencer R. Hall
Seasonal epidemics erupt commonly in nature and are driven by numerous mechanisms. Here, we suggest a new mechanism that could determine the size and timing of seasonal epidemics: rearing environment changes the performance of parasites. This mechanism arises when the environmental conditions in which a parasite is produced impact its performance—independently from the current environment. To illustrate the potential for ‘rearing effects’, we show how temperature influences infection risk (transmission rate) in a Daphnia-fungus disease...

Data from: A multispecies coalescent model for quantitative traits

Fabio K. Mendes, Jesualdo A. Fuentes-González, Joshua G. Schraiber & Matthew W. Hahn
We present a multispecies coalescent model for quantitative traits that allows for evolutionary inferences at micro- and macroevolutionary scales. A major advantage of this model is its ability to incorporate genealogical discordance underlying a quantitative trait. We show that discordance causes a decrease in the expected trait covariance between more closely related species relative to more distantly related species. If unaccounted for, this outcome can lead to an overestimation of a trait's evolutionary rate, to...

Data from: Fossils reveal the complex evolutionary history of the mammalian regionalized spine

Katrina Elizabeth Jones, K. D. Angielczyk, P. D. Polly, J. J. Head, V. Fernandez, J. K. Lungmus, S. Tulga & S. E. Pierce
A unique characteristic of mammals is a vertebral column with anatomically distinct regions, but when and how this trait evolved remains unknown. Here we reconstruct vertebral regions and their morphological disparity in the extinct forerunners of mammals, the non-mammalian synapsids, to elucidate the evolution of mammalian axial differentiation. Mapping patterns of regionalization and disparity (heterogeneity) across amniotes reveals that both traits increased during synapsid evolution. However, the onset of regionalization predates increased heterogeneity. Based on...

Data from: Seasonally sympatric but allochronic: differential expression of hypothalamic genes in a songbird during gonadal development

Carolyn M. Bauer, Adam M. Fudickar, Skylar Anderson-Buckingham, Mikus Abolins-Abols, Jonathan W. Atwell, Ellen D. Ketterson & Timothy J. Greives
Allochrony, the mismatch of reproductive schedules, is one mechanism that can mediate sympatric speciation and diversification. In songbirds, the transition into breeding condition and gonadal growth is regulated by the hypothalamic-pituitary-gonadal (HPG) axis at multiple levels. We investigated whether the difference in reproductive timing between two, seasonally sympatric subspecies of dark-eyed juncos (Junco hyemalis) was related to gene expression along the HPG axis. During the sympatric pre-breeding stage, we measured hypothalamic and testicular mRNA expression...

Data from: Mycelia-derived C contributes more to nitrogen cycling than root-derived C in ectomycorrhizal alpine forests

Ziliang Zhang, Richard P. Phillips, Wenqiang Zhao, Yuanshuang Yuan, Qing Liu & Huajun Yin
1. Plant roots and their associated microbial symbionts impact carbon (C) and nutrient cycling in ecosystems, but estimates of the relative contributions of root- versus microbe-derived dynamic inputs are highly uncertain. Roots release C into soil via exudation and turnover (i.e., root-derived C), but also by allocating C to mycorrhizal fungal mycelia, which exude C and undergo turnover (i.e., mycelia-derived C). Given that the relative contributions of root- and mycelia-derived C inputs are unknown, a...

Data from: Early breeding females experience greater telomere loss

Jessica L. Graham, Carolyn M. Bauer, Britt J. Heidinger, Ellen D. Ketterson & Timothy J. Greives
Annual reproductive success is often highest in individuals that initiate breeding early, yet relatively few individuals start breeding during this apparently optimal time. This suggests that individuals, particularly females who ultimately dictate when offspring are born, incur costs by initiating reproduction early in the season. We hypothesized that increases in the aging rate of somatic cells may be one such cost. Telomeres, the repetitive DNA sequences on the ends of chromosomes, may be good proxies...

Data from: Insulin signaling’s role in mediating tissue-specific nutritional plasticity and robustness in the horn-polyphenic beetle Onthophagus taurus

Sofia Casasa & Armin P. Moczek
Organisms cope with nutritional variation via developmental plasticity, adjusting trait size to nutrient availability for some traits while enabling others to develop in a nutritionally robust manner. Yet, the developmental mechanisms that regulate organ-specific growth across nutritional gradients remain poorly understood. We assessed the functions of members of the insulin/insulin-like signaling pathway (IIS) in the regulation of nutrition sensitivity and robustness in males of the horn-polyphenic beetle Onthophagus taurus, as well as potential regulatory interactions...

Data from: Mitochondria and Wolbachia titers are positively correlated during maternal transmission

Lucas P. Henry, Irene L.G. Newton & Irene L. G. Newton
Mothers provide their offspring with symbionts. Maternally transmitted, intracellular symbionts must disperse from mother to offspring with other cytoplasmic elements, like mitochondria. Here, we investigated how the intracellular symbiont Wolbachia interacts with mitochondria during maternal transmission. Mitochondria and Wolbachia may interact antagonistically and compete as each population tries to ensure its own evolutionary success. Alternatively, mitochondria and Wolbachia may cooperate as both benefit from ensuring the fitness of the mother. We characterized the relationship between...

Data from: Dissecting the basis of novel trait evolution in a radiation with widespread phylogenetic discordance

Meng Wu, Jamie L. Kostyun, Matthew W. Hahn & Leonie C. Moyle
Phylogenetic analyses of trait evolution can provide insight into the evolutionary processes that initiate and drive phenotypic diversification. However, recent phylogenomic studies have revealed extensive gene tree-species tree discordance, which can lead to incorrect inferences of trait evolution if only a single species tree is used for analysis. This phenomenon—dubbed “hemiplasy”—is particularly important to consider during analyses of character evolution in rapidly radiating groups, where discordance is widespread. Here we generate whole-transcriptome data for a...

Data from: RRapid global spread of wRi-like Wolbachia across multiple Drosophila

Michael Turelli, Brandon S. Cooper, Kelly M. Richardson, Paul S. Ginsberg, Brooke Peckenpaugh, Chenling X. Antelope, Kevin J. Kim, Michael R. May, Antoine Abrieux, Derek A. Wilson, Michael J. Bronski, Brian R. Moore, Jian-Jun Gao, Michael B. Eisen, Joanna C. Chiu, William R. Conner & Ary A. Hoffmann
Maternally transmitted Wolbachia, Spiroplasma and Cardinium bacteria are common in insects, but their interspecific spread is poorly understood. Endosymbionts can spread rapidly within host species by manipulating host reproduction, as typified by the global spread of wRi Wolbachia observed in Drosophila simulans. However, because Wolbachia cannot survive outside host cells, spread between distantly related host species requires horizontal transfers that are presumably rare. Here we document spread of wRi-like Wolbachia among eight highly diverged Drosophila...

Data from: Genetic diversity, infection prevalence, and possible transmission routes of Bartonella spp. in vampire bats

Daniel J. Becker, Laura M. Bergner, Alexandra B. Bentz, Richard J. Orton, Sonia Altizer & Daniel G. Streicker
Bartonella spp. are globally distributed bacteria that cause endocarditis in humans and domestic animals. Recent work has suggested bats as zoonotic reservoirs of some human Bartonella infections; however, the ecological and spatiotemporal patterns of infection in bats remain largely unknown. Here we studied the genetic diversity, prevalence of infection across seasons and years, individual risk factors, and possible transmission routes of Bartonella in populations of common vampire bats (Desmodus rotundus) in Peru and Belize, for...

Data from: Guidelines and considerations for designing field experiments simulating precipitation extremes in forest ecosystems

Heidi Asbjornsen, John L. Campbell, Katie A. Jennings, Matthew A. Vadeboncoeur, Cameron McIntire, Pamela H. Templer, Richard P. Phillips, Taryn L. Bauerle, Michael C. Dietze, Serita D. Frey, Peter M. Groffman, Rosella Guerrieri, Paul J. Hanson, Eric P. Kelsey, Alan K. Knapp, Nathan G. McDowell, Patrick Meir, Kimberly A. Novick, Scott V. Ollinger, Will T. Pockman, Paul G. Schaberg, Stan D. Wullschleger, Melinda D. Smith & Lindsey E. Rustad
1. Context. Precipitation regimes are changing in response to climate change, yet understanding of how forest ecosystems respond to extreme droughts and pluvials remains incomplete. As future precipitation extremes will likely fall outside the range of historical variability, precipitation manipulation experiments (PMEs) are critical to advancing knowledge about potential ecosystem responses. However, few PMEs have been conducted in forests compared to short-statured ecosystems, and forest PMEs have unique design requirements and constraints. Moreover, past forest...

Data from: Trade‐off between reproductive and anti‐competitor abilities in an insect–parasitic nematode–bacteria symbiosis

Sofia Bertoloni Meli & Farrah Bashey
Mutualistic symbionts can provide diverse benefits to their hosts and often supply key trait variation for host adaptation. The bacterial symbionts of entomopathogenic nematodes play a crucial role in successful colonization of and reproduction in the insect host. Additionally, these symbionts can produce a diverse array of antimicrobial compounds to deter within‐host competitors. Natural isolates of the symbiont, Xenorhabdus bovienii, show considerable variation in their ability to target sympatric competitors via bacteriocins, which can inhibit...

Data from: Linking host traits, interactions with competitors, and disease: mechanistic foundations for disease dilution

Alexander T. Strauss, Anna M. Bowling, Meghan A. Duffy, Carla E. Cáceres & Spencer R. Hall
1.The size of disease epidemics remains difficult to predict, especially when parasites interact with multiple species. Traits of focal hosts like susceptibility could directly predict epidemic size, while other traits including competitive ability might shape it indirectly in communities with a ‘dilution effect’. 2.In a dilution effect, diluter taxa can reduce disease by regulating (lowering) the density of focal hosts (i.e., through competition), or by reducing encounters between focal hosts and parasites. However, these dilution...

Data from: The evolutionary history of dogs in the Americas

Máire Ní Leathlobhair, Angela R. Perri, Evan K. Irving-Pease, Kelsey E. Witt, Anna Linderholm, James Haile, Ophelie Lebrasseur, Carly Ameen, Jeffrey Blick, Adam R. Boyko, Selina Brace, Yahaira Nunes Cortes, Susan J. Crockford, Alison Devault, Evangelos A. Dimopoulos, Morley Eldridge, Jacob Enk, Shyam Gopalakrishnan, Kevin Gori, Vaughan Grimes, Eric Guiry, Anders J. Hansen, Ardern Hulme-Beaman, John Johnson, Andrew Kitchen … & Laurent A. F. Frantz
Dogs were present in the Americas prior to the arrival of European colonists, but the origin and fate of these pre-contact dogs are largely unknown. We sequenced 71 mitochondrial and seven nuclear genomes from ancient North American and Siberian dogs spanning ~9,000 years. Our analysis indicates that American dogs were not domesticated from North American wolves. Instead, American dogs form a monophyletic lineage that likely originated in Siberia and dispersed into the Americas alongside people....

Data from: Causal reasoning in rats' behaviour systems

Robert Ian Bowers & William Timberlake
Conceiving of stimuli and responses as causes and effects, and assuming that rats acquire representational models of causal relations from Pavlovian procedures, previous work by Causal Model Theory proponents attempted to train rat subjects to represent Light as a cause of both Tone and food. By these assumptions, with formal help from Bayesian Networks, self-production of the Tone should reduce expectation of alternative causes, including Light, and their effects, including food. Reduced feeder-directed responding to...

Data from: Habitat, latitude, and body mass influence the temperature dependence of metabolic rate

John P. DeLong, Gwendolyn Bachman, Jean P. Gibert, Thomas M. Luhring, Kristi L. Montooth, Abigail Neyer & Ben Reed
The sensitivity of metabolic rate to temperature constrains the climate in which ectotherms can function, yet the temperature dependence of metabolic rate may evolve in response to biotic and abiotic factors. We compiled a dataset on the temperature dependence of metabolic rate for heterotrophic ectotherms from studies that show a peak in metabolic rate at an optimal temperature (i.e., that describe the thermal performance curve for metabolic rate). We found that peak metabolic rates were...

Data from: Spatial processes and evolutionary models: a critical review

P. David Polly
Evolution is a fundamentally population level process in which variation, drift, and selection produce both temporal and spatial patterns of change. Statistical model fitting is now commonly used to estimate which kind of evolutionary process best explains patterns of change through time, using models like Brownian motion, stabilizing selection (Ornstein-Uhlenbeck), and directional selection on traits measured from stratigraphic sequences or on phylogenetic trees. But these models assume that the traits possessed by a species are...

Data from: A quantitative proteomic analysis of cofilin phosphorylation in myeloid cells and its modulation using the LIM kinase inhibitor Pyr1

Renaud Prudent, Nathalie Demoncheaux, Hélène Diemer, Véronique Collin-Faure, Reuben Kapur, Fabrice Paublant, Laurence Lafanechère, Sarah Cianférani & Thierry Rabilloud
LIM kinases are located at a strategic crossroad, downstream of several signaling pathways and upstream of effectors such as microtubules and the actin cytoskeleton. Cofilin is the only LIM kinases substrate that is well described to date, and its phosphorylation on serine 3 by LIM kinases controls cofilin actin-severing activity. Consequently, LIM kinases inhibition leads to actin cytoskeleton disorganization and blockade of cell motility, which makes this strategy attractive in anticancer treatments. LIMK has also...

Data from: Male courtship preference during seasonal sympatry may maintain population divergence

Abigail A. Kimmitt, Samantha L. Dietz, Dustin G. Reichard & Ellen D. Ketterson
Animal migration can lead to a population distribution known as seasonal sympatry, in which closely related migrant and resident populations of the same species co-occur in sympatry during part of the year, but are otherwise allopatric. During seasonal sympatry in early spring, residents may initiate reproduction before migrants depart, presenting an opportunity for gene flow. Differences in reproductive timing between migrant and resident populations may favor residents that exhibit preferences for potential mates of similar...

Data from: Drought legacies are dependent on water table depth, wood anatomy, and drought timing across the eastern U.S.

Steven A. Kannenberg, Justin T. Maxwell, Neil Pederson, Loïc D'Orangeville, Darren L. Ficklin & Richard P. Phillips
Severe droughts can impart long-lasting legacies on forest ecosystems through lagged effects that hinder tree recovery and suppress whole-forest carbon uptake. However, the local climatic and edaphic factors that interact to affect drought legacies in temperate forests remain unknown. Here, we pair a dataset of 143 tree ring chronologies across the mesic forests of the eastern U.S. with historical climate and local soil properties. We found legacy effects to be widespread, the magnitude of which...

Data from: Patterns of transposable element variation and clinality in Drosophila

Jeffrey R. Adrion, David J. Begun & Matthew W. Hahn
Natural populations often exist in spatially diverse environments and may experience variation in the strength and targets of natural selection across their ranges. Drosophila provides an excellent opportunity to study the effects of spatially varying selection in natural populations, as both D. melanogaster and D. simulans live across a wide range of environments in North America. Here, we characterize patterns of variation in transposable elements (TEs) from six populations of D. melanogaster and nine populations...

Data from: Assessing the contributions of intraspecific and environmental sources of infection in urban wildlife: Salmonella enterica and white ibis as a case study

Daniel J. Becker, Claire S. Teitelbaum, Maureen H. Murray, Shannon E. Curry, Catharine N. Welch, Taylor Ellison, Henry C. Adams, R. Scott Rozier, Erin K. Lipp, Sonia M. Hernandez, Sonia Altizer & Richard J. Hall
Conversion of natural habitats into urban landscapes can expose wildlife to novel pathogens and alter pathogen transmission pathways. Because transmission is difficult to quantify for many wildlife pathogens, mathematical models paired with field observations can help select among competing transmission pathways that might operate in urban landscapes. Here we develop a mathematical model for the enteric bacteria Salmonella enterica in urban-foraging white ibis (Eudocimus albus) in south Florida as a case study to determine (i)...

Data from: An experimental test of the relationship between yolk testosterone and the social environment in a colonial passerine

Alexandra B. Bentz, Victoria A. Andreasen & Kristen J. Navara
Maternal hormones can be transferred to offspring during prenatal development in response to the maternal social environment, and may adaptively alter offspring phenotype. For example, numerous avian studies show that aggressive competition with conspecifics tends to result in females allocating more testosterone to their egg yolks, and this may cause offspring to have more competitive phenotypes. However, deviations from this pattern of maternal testosterone allocation are found, largely in studies of colonial species, and have...

Registration Year

  • 2018
    28

Resource Types

  • Dataset
    28

Affiliations

  • Indiana University Bloomington
    28
  • University of Georgia
    4
  • Harvard University
    3
  • University of Illinois at Urbana Champaign
    3
  • University of Michigan-Ann Arbor
    2
  • University of Cambridge
    2
  • Adelphi University
    2
  • Cornell University
    2
  • North Dakota State University
    2
  • University of Montana
    1