686,353 Works

SH434355.07FU

Urmas Kõljalg, Kessy Abarenkov, R. Henrik Nilsson, Karl-Henrik Larsson, Anders Bjørnsgard Aas, Rachel Adams, Artur Alves, Joseph F. Ammirati, A. Elizabeth Arnold, Mohammad Bahram, Johan Bengtsson-Palme, Anna Berlin, Synnøve Botnen, Sarah Bourlat, Tanya Cheeke, Bálint Dima, Rein Drenkhan, Camila Duarte, Margarita Dueñas, Ursula Eberhardt, Hanna Friberg, Tobias G. Frøslev, Sigisfredo Garnica, József Geml, Masoomeh Ghobad-Nejhad … & Christian Wurzbacher
UNITE provides a unified way for delimiting, identifying, communicating, and working with DNA-based Species Hypotheses (SH). All fungal ITS sequences in the international nucleotide sequence databases are clustered to approximately the species level by applying a set of dynamic distance values (<0.5 - 3.0%). All species hypotheses are given a unique, stable name in the form of a DOI, and their taxonomic and ecological annotations are verified through distributed, web-based third-party annotation efforts. SHs are...

SH428367.07FU

Urmas Kõljalg, Kessy Abarenkov, R. Henrik Nilsson, Karl-Henrik Larsson, Anders Bjørnsgard Aas, Rachel Adams, Artur Alves, Joseph F. Ammirati, A. Elizabeth Arnold, Mohammad Bahram, Johan Bengtsson-Palme, Anna Berlin, Synnøve Botnen, Sarah Bourlat, Tanya Cheeke, Bálint Dima, Rein Drenkhan, Camila Duarte, Margarita Dueñas, Ursula Eberhardt, Hanna Friberg, Tobias G. Frøslev, Sigisfredo Garnica, József Geml, Masoomeh Ghobad-Nejhad … & Christian Wurzbacher
UNITE provides a unified way for delimiting, identifying, communicating, and working with DNA-based Species Hypotheses (SH). All fungal ITS sequences in the international nucleotide sequence databases are clustered to approximately the species level by applying a set of dynamic distance values (<0.5 - 3.0%). All species hypotheses are given a unique, stable name in the form of a DOI, and their taxonomic and ecological annotations are verified through distributed, web-based third-party annotation efforts. SHs are...

SH038228.07FU

Urmas Kõljalg, Kessy Abarenkov, R. Henrik Nilsson, Karl-Henrik Larsson, Anders Bjørnsgard Aas, Rachel Adams, Artur Alves, Joseph F. Ammirati, A. Elizabeth Arnold, Mohammad Bahram, Johan Bengtsson-Palme, Anna Berlin, Synnøve Botnen, Sarah Bourlat, Tanya Cheeke, Bálint Dima, Rein Drenkhan, Camila Duarte, Margarita Dueñas, Ursula Eberhardt, Hanna Friberg, Tobias G. Frøslev, Sigisfredo Garnica, József Geml, Masoomeh Ghobad-Nejhad … & Christian Wurzbacher
UNITE provides a unified way for delimiting, identifying, communicating, and working with DNA-based Species Hypotheses (SH). All fungal ITS sequences in the international nucleotide sequence databases are clustered to approximately the species level by applying a set of dynamic distance values (<0.5 - 3.0%). All species hypotheses are given a unique, stable name in the form of a DOI, and their taxonomic and ecological annotations are verified through distributed, web-based third-party annotation efforts. SHs are...

SH035227.07FU

Urmas Kõljalg, Kessy Abarenkov, R. Henrik Nilsson, Karl-Henrik Larsson, Anders Bjørnsgard Aas, Rachel Adams, Artur Alves, Joseph F. Ammirati, A. Elizabeth Arnold, Mohammad Bahram, Johan Bengtsson-Palme, Anna Berlin, Synnøve Botnen, Sarah Bourlat, Tanya Cheeke, Bálint Dima, Rein Drenkhan, Camila Duarte, Margarita Dueñas, Ursula Eberhardt, Hanna Friberg, Tobias G. Frøslev, Sigisfredo Garnica, József Geml, Masoomeh Ghobad-Nejhad … & Christian Wurzbacher
UNITE provides a unified way for delimiting, identifying, communicating, and working with DNA-based Species Hypotheses (SH). All fungal ITS sequences in the international nucleotide sequence databases are clustered to approximately the species level by applying a set of dynamic distance values (<0.5 - 3.0%). All species hypotheses are given a unique, stable name in the form of a DOI, and their taxonomic and ecological annotations are verified through distributed, web-based third-party annotation efforts. SHs are...

SH071157.07FU

Urmas Kõljalg, Kessy Abarenkov, R. Henrik Nilsson, Karl-Henrik Larsson, Anders Bjørnsgard Aas, Rachel Adams, Artur Alves, Joseph F. Ammirati, A. Elizabeth Arnold, Mohammad Bahram, Johan Bengtsson-Palme, Anna Berlin, Synnøve Botnen, Sarah Bourlat, Tanya Cheeke, Bálint Dima, Rein Drenkhan, Camila Duarte, Margarita Dueñas, Ursula Eberhardt, Hanna Friberg, Tobias G. Frøslev, Sigisfredo Garnica, József Geml, Masoomeh Ghobad-Nejhad … & Christian Wurzbacher
UNITE provides a unified way for delimiting, identifying, communicating, and working with DNA-based Species Hypotheses (SH). All fungal ITS sequences in the international nucleotide sequence databases are clustered to approximately the species level by applying a set of dynamic distance values (<0.5 - 3.0%). All species hypotheses are given a unique, stable name in the form of a DOI, and their taxonomic and ecological annotations are verified through distributed, web-based third-party annotation efforts. SHs are...

SH131922.07FU

Urmas Kõljalg, Kessy Abarenkov, R. Henrik Nilsson, Karl-Henrik Larsson, Anders Bjørnsgard Aas, Rachel Adams, Artur Alves, Joseph F. Ammirati, A. Elizabeth Arnold, Mohammad Bahram, Johan Bengtsson-Palme, Anna Berlin, Synnøve Botnen, Sarah Bourlat, Tanya Cheeke, Bálint Dima, Rein Drenkhan, Camila Duarte, Margarita Dueñas, Ursula Eberhardt, Hanna Friberg, Tobias G. Frøslev, Sigisfredo Garnica, József Geml, Masoomeh Ghobad-Nejhad … & Christian Wurzbacher
UNITE provides a unified way for delimiting, identifying, communicating, and working with DNA-based Species Hypotheses (SH). All fungal ITS sequences in the international nucleotide sequence databases are clustered to approximately the species level by applying a set of dynamic distance values (<0.5 - 3.0%). All species hypotheses are given a unique, stable name in the form of a DOI, and their taxonomic and ecological annotations are verified through distributed, web-based third-party annotation efforts. SHs are...

SH111926.07FU

Urmas Kõljalg, Kessy Abarenkov, R. Henrik Nilsson, Karl-Henrik Larsson, Anders Bjørnsgard Aas, Rachel Adams, Artur Alves, Joseph F. Ammirati, A. Elizabeth Arnold, Mohammad Bahram, Johan Bengtsson-Palme, Anna Berlin, Synnøve Botnen, Sarah Bourlat, Tanya Cheeke, Bálint Dima, Rein Drenkhan, Camila Duarte, Margarita Dueñas, Ursula Eberhardt, Hanna Friberg, Tobias G. Frøslev, Sigisfredo Garnica, József Geml, Masoomeh Ghobad-Nejhad … & Christian Wurzbacher
UNITE provides a unified way for delimiting, identifying, communicating, and working with DNA-based Species Hypotheses (SH). All fungal ITS sequences in the international nucleotide sequence databases are clustered to approximately the species level by applying a set of dynamic distance values (<0.5 - 3.0%). All species hypotheses are given a unique, stable name in the form of a DOI, and their taxonomic and ecological annotations are verified through distributed, web-based third-party annotation efforts. SHs are...

SH023505.07FU

Urmas Kõljalg, Kessy Abarenkov, R. Henrik Nilsson, Karl-Henrik Larsson, Anders Bjørnsgard Aas, Rachel Adams, Artur Alves, Joseph F. Ammirati, A. Elizabeth Arnold, Mohammad Bahram, Johan Bengtsson-Palme, Anna Berlin, Synnøve Botnen, Sarah Bourlat, Tanya Cheeke, Bálint Dima, Rein Drenkhan, Camila Duarte, Margarita Dueñas, Ursula Eberhardt, Hanna Friberg, Tobias G. Frøslev, Sigisfredo Garnica, József Geml, Masoomeh Ghobad-Nejhad … & Christian Wurzbacher
UNITE provides a unified way for delimiting, identifying, communicating, and working with DNA-based Species Hypotheses (SH). All fungal ITS sequences in the international nucleotide sequence databases are clustered to approximately the species level by applying a set of dynamic distance values (<0.5 - 3.0%). All species hypotheses are given a unique, stable name in the form of a DOI, and their taxonomic and ecological annotations are verified through distributed, web-based third-party annotation efforts. SHs are...

SH140240.07FU

Urmas Kõljalg, Kessy Abarenkov, R. Henrik Nilsson, Karl-Henrik Larsson, Anders Bjørnsgard Aas, Rachel Adams, Artur Alves, Joseph F. Ammirati, A. Elizabeth Arnold, Mohammad Bahram, Johan Bengtsson-Palme, Anna Berlin, Synnøve Botnen, Sarah Bourlat, Tanya Cheeke, Bálint Dima, Rein Drenkhan, Camila Duarte, Margarita Dueñas, Ursula Eberhardt, Hanna Friberg, Tobias G. Frøslev, Sigisfredo Garnica, József Geml, Masoomeh Ghobad-Nejhad … & Christian Wurzbacher
UNITE provides a unified way for delimiting, identifying, communicating, and working with DNA-based Species Hypotheses (SH). All fungal ITS sequences in the international nucleotide sequence databases are clustered to approximately the species level by applying a set of dynamic distance values (<0.5 - 3.0%). All species hypotheses are given a unique, stable name in the form of a DOI, and their taxonomic and ecological annotations are verified through distributed, web-based third-party annotation efforts. SHs are...

SH023503.07FU

Urmas Kõljalg, Kessy Abarenkov, R. Henrik Nilsson, Karl-Henrik Larsson, Anders Bjørnsgard Aas, Rachel Adams, Artur Alves, Joseph F. Ammirati, A. Elizabeth Arnold, Mohammad Bahram, Johan Bengtsson-Palme, Anna Berlin, Synnøve Botnen, Sarah Bourlat, Tanya Cheeke, Bálint Dima, Rein Drenkhan, Camila Duarte, Margarita Dueñas, Ursula Eberhardt, Hanna Friberg, Tobias G. Frøslev, Sigisfredo Garnica, József Geml, Masoomeh Ghobad-Nejhad … & Christian Wurzbacher
UNITE provides a unified way for delimiting, identifying, communicating, and working with DNA-based Species Hypotheses (SH). All fungal ITS sequences in the international nucleotide sequence databases are clustered to approximately the species level by applying a set of dynamic distance values (<0.5 - 3.0%). All species hypotheses are given a unique, stable name in the form of a DOI, and their taxonomic and ecological annotations are verified through distributed, web-based third-party annotation efforts. SHs are...

SH023504.07FU

Urmas Kõljalg, Kessy Abarenkov, R. Henrik Nilsson, Karl-Henrik Larsson, Anders Bjørnsgard Aas, Rachel Adams, Artur Alves, Joseph F. Ammirati, A. Elizabeth Arnold, Mohammad Bahram, Johan Bengtsson-Palme, Anna Berlin, Synnøve Botnen, Sarah Bourlat, Tanya Cheeke, Bálint Dima, Rein Drenkhan, Camila Duarte, Margarita Dueñas, Ursula Eberhardt, Hanna Friberg, Tobias G. Frøslev, Sigisfredo Garnica, József Geml, Masoomeh Ghobad-Nejhad … & Christian Wurzbacher
UNITE provides a unified way for delimiting, identifying, communicating, and working with DNA-based Species Hypotheses (SH). All fungal ITS sequences in the international nucleotide sequence databases are clustered to approximately the species level by applying a set of dynamic distance values (<0.5 - 3.0%). All species hypotheses are given a unique, stable name in the form of a DOI, and their taxonomic and ecological annotations are verified through distributed, web-based third-party annotation efforts. SHs are...

SH015224.07FU

Urmas Kõljalg, Kessy Abarenkov, R. Henrik Nilsson, Karl-Henrik Larsson, Anders Bjørnsgard Aas, Rachel Adams, Artur Alves, Joseph F. Ammirati, A. Elizabeth Arnold, Mohammad Bahram, Johan Bengtsson-Palme, Anna Berlin, Synnøve Botnen, Sarah Bourlat, Tanya Cheeke, Bálint Dima, Rein Drenkhan, Camila Duarte, Margarita Dueñas, Ursula Eberhardt, Hanna Friberg, Tobias G. Frøslev, Sigisfredo Garnica, József Geml, Masoomeh Ghobad-Nejhad … & Christian Wurzbacher
UNITE provides a unified way for delimiting, identifying, communicating, and working with DNA-based Species Hypotheses (SH). All fungal ITS sequences in the international nucleotide sequence databases are clustered to approximately the species level by applying a set of dynamic distance values (<0.5 - 3.0%). All species hypotheses are given a unique, stable name in the form of a DOI, and their taxonomic and ecological annotations are verified through distributed, web-based third-party annotation efforts. SHs are...

SH081142.07FU

Urmas Kõljalg, Kessy Abarenkov, R. Henrik Nilsson, Karl-Henrik Larsson, Anders Bjørnsgard Aas, Rachel Adams, Artur Alves, Joseph F. Ammirati, A. Elizabeth Arnold, Mohammad Bahram, Johan Bengtsson-Palme, Anna Berlin, Synnøve Botnen, Sarah Bourlat, Tanya Cheeke, Bálint Dima, Rein Drenkhan, Camila Duarte, Margarita Dueñas, Ursula Eberhardt, Hanna Friberg, Tobias G. Frøslev, Sigisfredo Garnica, József Geml, Masoomeh Ghobad-Nejhad … & Christian Wurzbacher
UNITE provides a unified way for delimiting, identifying, communicating, and working with DNA-based Species Hypotheses (SH). All fungal ITS sequences in the international nucleotide sequence databases are clustered to approximately the species level by applying a set of dynamic distance values (<0.5 - 3.0%). All species hypotheses are given a unique, stable name in the form of a DOI, and their taxonomic and ecological annotations are verified through distributed, web-based third-party annotation efforts. SHs are...

SH154751.07FU

Urmas Kõljalg, Kessy Abarenkov, R. Henrik Nilsson, Karl-Henrik Larsson, Anders Bjørnsgard Aas, Rachel Adams, Artur Alves, Joseph F. Ammirati, A. Elizabeth Arnold, Mohammad Bahram, Johan Bengtsson-Palme, Anna Berlin, Synnøve Botnen, Sarah Bourlat, Tanya Cheeke, Bálint Dima, Rein Drenkhan, Camila Duarte, Margarita Dueñas, Ursula Eberhardt, Hanna Friberg, Tobias G. Frøslev, Sigisfredo Garnica, József Geml, Masoomeh Ghobad-Nejhad … & Christian Wurzbacher
UNITE provides a unified way for delimiting, identifying, communicating, and working with DNA-based Species Hypotheses (SH). All fungal ITS sequences in the international nucleotide sequence databases are clustered to approximately the species level by applying a set of dynamic distance values (<0.5 - 3.0%). All species hypotheses are given a unique, stable name in the form of a DOI, and their taxonomic and ecological annotations are verified through distributed, web-based third-party annotation efforts. SHs are...

SH434354.07FU

Urmas Kõljalg, Kessy Abarenkov, R. Henrik Nilsson, Karl-Henrik Larsson, Anders Bjørnsgard Aas, Rachel Adams, Artur Alves, Joseph F. Ammirati, A. Elizabeth Arnold, Mohammad Bahram, Johan Bengtsson-Palme, Anna Berlin, Synnøve Botnen, Sarah Bourlat, Tanya Cheeke, Bálint Dima, Rein Drenkhan, Camila Duarte, Margarita Dueñas, Ursula Eberhardt, Hanna Friberg, Tobias G. Frøslev, Sigisfredo Garnica, József Geml, Masoomeh Ghobad-Nejhad … & Christian Wurzbacher
UNITE provides a unified way for delimiting, identifying, communicating, and working with DNA-based Species Hypotheses (SH). All fungal ITS sequences in the international nucleotide sequence databases are clustered to approximately the species level by applying a set of dynamic distance values (<0.5 - 3.0%). All species hypotheses are given a unique, stable name in the form of a DOI, and their taxonomic and ecological annotations are verified through distributed, web-based third-party annotation efforts. SHs are...

SH161904.07FU

Urmas Kõljalg, Kessy Abarenkov, R. Henrik Nilsson, Karl-Henrik Larsson, Anders Bjørnsgard Aas, Rachel Adams, Artur Alves, Joseph F. Ammirati, A. Elizabeth Arnold, Mohammad Bahram, Johan Bengtsson-Palme, Anna Berlin, Synnøve Botnen, Sarah Bourlat, Tanya Cheeke, Bálint Dima, Rein Drenkhan, Camila Duarte, Margarita Dueñas, Ursula Eberhardt, Hanna Friberg, Tobias G. Frøslev, Sigisfredo Garnica, József Geml, Masoomeh Ghobad-Nejhad … & Christian Wurzbacher
UNITE provides a unified way for delimiting, identifying, communicating, and working with DNA-based Species Hypotheses (SH). All fungal ITS sequences in the international nucleotide sequence databases are clustered to approximately the species level by applying a set of dynamic distance values (<0.5 - 3.0%). All species hypotheses are given a unique, stable name in the form of a DOI, and their taxonomic and ecological annotations are verified through distributed, web-based third-party annotation efforts. SHs are...

SH121946.07FU

Urmas Kõljalg, Kessy Abarenkov, R. Henrik Nilsson, Karl-Henrik Larsson, Anders Bjørnsgard Aas, Rachel Adams, Artur Alves, Joseph F. Ammirati, A. Elizabeth Arnold, Mohammad Bahram, Johan Bengtsson-Palme, Anna Berlin, Synnøve Botnen, Sarah Bourlat, Tanya Cheeke, Bálint Dima, Rein Drenkhan, Camila Duarte, Margarita Dueñas, Ursula Eberhardt, Hanna Friberg, Tobias G. Frøslev, Sigisfredo Garnica, József Geml, Masoomeh Ghobad-Nejhad … & Christian Wurzbacher
UNITE provides a unified way for delimiting, identifying, communicating, and working with DNA-based Species Hypotheses (SH). All fungal ITS sequences in the international nucleotide sequence databases are clustered to approximately the species level by applying a set of dynamic distance values (<0.5 - 3.0%). All species hypotheses are given a unique, stable name in the form of a DOI, and their taxonomic and ecological annotations are verified through distributed, web-based third-party annotation efforts. SHs are...

SH030687.07FU

Urmas Kõljalg, Kessy Abarenkov, R. Henrik Nilsson, Karl-Henrik Larsson, Anders Bjørnsgard Aas, Rachel Adams, Artur Alves, Joseph F. Ammirati, A. Elizabeth Arnold, Mohammad Bahram, Johan Bengtsson-Palme, Anna Berlin, Synnøve Botnen, Sarah Bourlat, Tanya Cheeke, Bálint Dima, Rein Drenkhan, Camila Duarte, Margarita Dueñas, Ursula Eberhardt, Hanna Friberg, Tobias G. Frøslev, Sigisfredo Garnica, József Geml, Masoomeh Ghobad-Nejhad … & Christian Wurzbacher
UNITE provides a unified way for delimiting, identifying, communicating, and working with DNA-based Species Hypotheses (SH). All fungal ITS sequences in the international nucleotide sequence databases are clustered to approximately the species level by applying a set of dynamic distance values (<0.5 - 3.0%). All species hypotheses are given a unique, stable name in the form of a DOI, and their taxonomic and ecological annotations are verified through distributed, web-based third-party annotation efforts. SHs are...

SH131154.07FU

Urmas Kõljalg, Kessy Abarenkov, R. Henrik Nilsson, Karl-Henrik Larsson, Anders Bjørnsgard Aas, Rachel Adams, Artur Alves, Joseph F. Ammirati, A. Elizabeth Arnold, Mohammad Bahram, Johan Bengtsson-Palme, Anna Berlin, Synnøve Botnen, Sarah Bourlat, Tanya Cheeke, Bálint Dima, Rein Drenkhan, Camila Duarte, Margarita Dueñas, Ursula Eberhardt, Hanna Friberg, Tobias G. Frøslev, Sigisfredo Garnica, József Geml, Masoomeh Ghobad-Nejhad … & Christian Wurzbacher
UNITE provides a unified way for delimiting, identifying, communicating, and working with DNA-based Species Hypotheses (SH). All fungal ITS sequences in the international nucleotide sequence databases are clustered to approximately the species level by applying a set of dynamic distance values (<0.5 - 3.0%). All species hypotheses are given a unique, stable name in the form of a DOI, and their taxonomic and ecological annotations are verified through distributed, web-based third-party annotation efforts. SHs are...

SH015220.07FU

Urmas Kõljalg, Kessy Abarenkov, R. Henrik Nilsson, Karl-Henrik Larsson, Anders Bjørnsgard Aas, Rachel Adams, Artur Alves, Joseph F. Ammirati, A. Elizabeth Arnold, Mohammad Bahram, Johan Bengtsson-Palme, Anna Berlin, Synnøve Botnen, Sarah Bourlat, Tanya Cheeke, Bálint Dima, Rein Drenkhan, Camila Duarte, Margarita Dueñas, Ursula Eberhardt, Hanna Friberg, Tobias G. Frøslev, Sigisfredo Garnica, József Geml, Masoomeh Ghobad-Nejhad … & Christian Wurzbacher
UNITE provides a unified way for delimiting, identifying, communicating, and working with DNA-based Species Hypotheses (SH). All fungal ITS sequences in the international nucleotide sequence databases are clustered to approximately the species level by applying a set of dynamic distance values (<0.5 - 3.0%). All species hypotheses are given a unique, stable name in the form of a DOI, and their taxonomic and ecological annotations are verified through distributed, web-based third-party annotation efforts. SHs are...

SH426372.07FU

Urmas Kõljalg, Kessy Abarenkov, R. Henrik Nilsson, Karl-Henrik Larsson, Anders Bjørnsgard Aas, Rachel Adams, Artur Alves, Joseph F. Ammirati, A. Elizabeth Arnold, Mohammad Bahram, Johan Bengtsson-Palme, Anna Berlin, Synnøve Botnen, Sarah Bourlat, Tanya Cheeke, Bálint Dima, Rein Drenkhan, Camila Duarte, Margarita Dueñas, Ursula Eberhardt, Hanna Friberg, Tobias G. Frøslev, Sigisfredo Garnica, József Geml, Masoomeh Ghobad-Nejhad … & Christian Wurzbacher
UNITE provides a unified way for delimiting, identifying, communicating, and working with DNA-based Species Hypotheses (SH). All fungal ITS sequences in the international nucleotide sequence databases are clustered to approximately the species level by applying a set of dynamic distance values (<0.5 - 3.0%). All species hypotheses are given a unique, stable name in the form of a DOI, and their taxonomic and ecological annotations are verified through distributed, web-based third-party annotation efforts. SHs are...

SH090244.07FU

Urmas Kõljalg, Kessy Abarenkov, R. Henrik Nilsson, Karl-Henrik Larsson, Anders Bjørnsgard Aas, Rachel Adams, Artur Alves, Joseph F. Ammirati, A. Elizabeth Arnold, Mohammad Bahram, Johan Bengtsson-Palme, Anna Berlin, Synnøve Botnen, Sarah Bourlat, Tanya Cheeke, Bálint Dima, Rein Drenkhan, Camila Duarte, Margarita Dueñas, Ursula Eberhardt, Hanna Friberg, Tobias G. Frøslev, Sigisfredo Garnica, József Geml, Masoomeh Ghobad-Nejhad … & Christian Wurzbacher
UNITE provides a unified way for delimiting, identifying, communicating, and working with DNA-based Species Hypotheses (SH). All fungal ITS sequences in the international nucleotide sequence databases are clustered to approximately the species level by applying a set of dynamic distance values (<0.5 - 3.0%). All species hypotheses are given a unique, stable name in the form of a DOI, and their taxonomic and ecological annotations are verified through distributed, web-based third-party annotation efforts. SHs are...

SH030223.07FU

Urmas Kõljalg, Kessy Abarenkov, R. Henrik Nilsson, Karl-Henrik Larsson, Anders Bjørnsgard Aas, Rachel Adams, Artur Alves, Joseph F. Ammirati, A. Elizabeth Arnold, Mohammad Bahram, Johan Bengtsson-Palme, Anna Berlin, Synnøve Botnen, Sarah Bourlat, Tanya Cheeke, Bálint Dima, Rein Drenkhan, Camila Duarte, Margarita Dueñas, Ursula Eberhardt, Hanna Friberg, Tobias G. Frøslev, Sigisfredo Garnica, József Geml, Masoomeh Ghobad-Nejhad … & Christian Wurzbacher
UNITE provides a unified way for delimiting, identifying, communicating, and working with DNA-based Species Hypotheses (SH). All fungal ITS sequences in the international nucleotide sequence databases are clustered to approximately the species level by applying a set of dynamic distance values (<0.5 - 3.0%). All species hypotheses are given a unique, stable name in the form of a DOI, and their taxonomic and ecological annotations are verified through distributed, web-based third-party annotation efforts. SHs are...

SH015221.07FU

Urmas Kõljalg, Kessy Abarenkov, R. Henrik Nilsson, Karl-Henrik Larsson, Anders Bjørnsgard Aas, Rachel Adams, Artur Alves, Joseph F. Ammirati, A. Elizabeth Arnold, Mohammad Bahram, Johan Bengtsson-Palme, Anna Berlin, Synnøve Botnen, Sarah Bourlat, Tanya Cheeke, Bálint Dima, Rein Drenkhan, Camila Duarte, Margarita Dueñas, Ursula Eberhardt, Hanna Friberg, Tobias G. Frøslev, Sigisfredo Garnica, József Geml, Masoomeh Ghobad-Nejhad … & Christian Wurzbacher
UNITE provides a unified way for delimiting, identifying, communicating, and working with DNA-based Species Hypotheses (SH). All fungal ITS sequences in the international nucleotide sequence databases are clustered to approximately the species level by applying a set of dynamic distance values (<0.5 - 3.0%). All species hypotheses are given a unique, stable name in the form of a DOI, and their taxonomic and ecological annotations are verified through distributed, web-based third-party annotation efforts. SHs are...

SH015222.07FU

Urmas Kõljalg, Kessy Abarenkov, R. Henrik Nilsson, Karl-Henrik Larsson, Anders Bjørnsgard Aas, Rachel Adams, Artur Alves, Joseph F. Ammirati, A. Elizabeth Arnold, Mohammad Bahram, Johan Bengtsson-Palme, Anna Berlin, Synnøve Botnen, Sarah Bourlat, Tanya Cheeke, Bálint Dima, Rein Drenkhan, Camila Duarte, Margarita Dueñas, Ursula Eberhardt, Hanna Friberg, Tobias G. Frøslev, Sigisfredo Garnica, József Geml, Masoomeh Ghobad-Nejhad … & Christian Wurzbacher
UNITE provides a unified way for delimiting, identifying, communicating, and working with DNA-based Species Hypotheses (SH). All fungal ITS sequences in the international nucleotide sequence databases are clustered to approximately the species level by applying a set of dynamic distance values (<0.5 - 3.0%). All species hypotheses are given a unique, stable name in the form of a DOI, and their taxonomic and ecological annotations are verified through distributed, web-based third-party annotation efforts. SHs are...

Registration Year

  • 2014
    2
  • 2015
    487,442
  • 2016
    5
  • 2017
    33
  • 2018
    188,204
  • 2019
    10,667

Resource Types

  • Dataset
    686,082
  • Text
    17
  • Image
    3
  • DataPaper
    1

Data Centers

  • Plutof. Data Management and Publishing Platform
    686,353