134 Works

An Order on Sets of Tilings Corresponding to an Order on Languages

Nathalie Aubrun & Mathieu Sablik
Traditionally a tiling is defined with a finite number of finite forbidden patterns. We can generalize this notion considering any set of patterns. Generalized tilings defined in this way can be studied with a dynamical point of view, leading to the notion of subshift. In this article we establish a correspondence between an order on subshifts based on dynamical transformations on them and an order on languages of forbidden patterns based on computability properties.

Weak MSO with the Unbounding Quantifier

Mikolaj Bojanczyk
A new class of languages of infinite words is introduced, called the \emph{max-regular languages}, extending the class of $\omega$-regular languages. The class has two equivalent descriptions: in terms of automata (a type of deterministic counter automaton), and in terms of logic (weak monadic second-order logic with a bounding quantifier). Effective translations between the logic and automata are given.

Generating Shorter Bases for Hard Random Lattices

Joel Alwen & Chris Peikert
We revisit the problem of generating a ``hard'' random lattice together with a basis of relatively short vectors. This problem has gained in importance lately due to new cryptographic schemes that use such a procedure for generating public/secret key pairs. In these applications, a shorter basis directly corresponds to milder underlying complexity assumptions and smaller key sizes. The contributions of this work are twofold. First, using the \emph{Hermite normal form} as an organizing principle, we...

Computing Graph Roots Without Short Cycles

Babak Farzad, Lap Chi Lau, Van Bang Le & Nguyen Ngoc Tuy
Graph $G$ is the square of graph $H$ if two vertices $x,y$ have an edge in $G$ if and only if $x,y$ are of distance at most two in $H$. Given $H$ it is easy to compute its square $H^2$, however Motwani and Sudan proved that it is NP-complete to determine if a given graph $G$ is the square of some graph $H$ (of girth $3$). In this paper we consider the characterization and recognition...

Randomness on Computable Probability Spaces - A Dynamical Point of View

Peter Gacs, Mathieu Hoyrup & Cristobal Rojas
We extend the notion of randomness (in the version introduced by Schnorr) to computable Probability Spaces and compare it to a \emph{dynamical} notion of randomness: typicality. Roughly, a point is \emph{typical} for some dynamic, if it follows the statistical behavior of the system (Birkhoff's pointwise ergodic theorem). We prove that a point is Schnorr random if and only if it is typical for every \emph{mixing} computable dynamics. To prove the result we develop some tools...

A Polynomial Kernel for Multicut in Trees

Nicolas Bousquet, Jean Daligault, Stephan Thomasse & Anders Yeo
The {\sc Multicut In Trees} problem consists in deciding, given a tree, a set of requests (i.e. paths in the tree) and an integer $k$, whether there exists a set of $k$ edges cutting all the requests. This problem was shown to be FPT by Guo and Niedermeyer (2005). They also provided an exponential kernel. They asked whether this problem has a polynomial kernel. This question was also raised by Fellows (2006). We show that...

Testing Linear-Invariant Non-Linear Properties

Arnab Bhattacharyya, Victor Chen, Madhu Sudan & Ning Xie
We consider the task of testing properties of Boolean functions that are invariant under linear transformations of the Boolean cube. Previous work in property testing, including the linearity test and the test for Reed-Muller codes, has mostly focused on such tasks for linear properties. The one exception is a test due to Green for {}``triangle freeness'': A function $f:\mathbb{F}_{2}^{n}\to\mathbb{F}_{2}$ satisfies this property if $f(x),f(y),f(x+y)$ do not all equal $1$, for any pair $x,y\in\mathbb{F}_{2}^{n}$. Here we...

Reverse Engineering Prefix Tables

Julien Clement, Maxime Crochemore & Giuseppina Rindone
The Prefix table of a string reports for each position the maximal length of its prefixes starting here. The Prefix table and its dual Suffix table are basic tools used in the design of the most efficient string-matching and pattern extraction algorithms. These tables can be computed in linear time independently of the alphabet size. We give an algorithmic characterisation of a Prefix table (it can be adapted to a Suffix table). Namely, the algorithm...

Undecidable Properties of Limit Set Dynamics of Cellular Automata

Pietro Di Lena & Luciano Margara
Cellular Automata (CA) are discrete dynamical systems and an abstract model of parallel computation. The limit set of a cellular automaton is its maximal topological attractor. A well know result, due to Kari, says that all nontrivial properties of limit sets are undecidable. In this paper we consider properties of limit set dynamics, i.e. properties of the dynamics of Cellular Automata restricted to their limit sets. There can be no equivalent of Kari's Theorem for...

On the Average Complexity of Moore's State Minimization Algorithm

Frederique Bassino, Julien David & Cyril Nicaud
We prove that, for any arbitrary finite alphabet and for the uniform distribution over deterministic and accessible automata with $n$ states, the average complexity of Moore's state minimization algorithm is in $\mathcal{O}(n \log n)$. Moreover this bound is tight in the case of unary automata.

A Generalization of Nemhauser and Trotter's Local Optimization Theorem

Michael R. Fellows, Jiong Guo, Hannes Moser & Rolf Niedermeier
The Nemhauser-Trotter local optimization theorem applies to the NP-hard \textsc{Vertex Cover} problem and has applications in approximation as well as parameterized algorithmics. We present a framework that generalizes Nemhauser and Trotter's result to vertex deletion and graph packing problems, introducing novel algorithmic strategies based on purely combinatorial arguments (not referring to linear programming as the Nemhauser-Trotter result originally did). We exhibit our framework using a generalization of \textsc{Vertex Cover}, called \textrm{\sc Bounded-Degree Deletion}, that has...

Almost-Uniform Sampling of Points on High-Dimensional Algebraic Varieties

Mahdi Cheraghchi & Amin Shokrollahi
We consider the problem of uniform sampling of points on an algebraic variety. Specifically, we develop a randomized algorithm that, given a small set of multivariate polynomials over a sufficiently large finite field, produces a common zero of the polynomials almost uniformly at random. The statistical distance between the output distribution of the algorithm and the uniform distribution on the set of common zeros is polynomially small in the field size, and the running time...

Fragments of First-Order Logic over Infinite Words

Volker Diekert & Manfred Kufleitner
We give topological and algebraic characterizations as well as language theoretic descriptions of the following subclasses of first-order logic $\mathrm{FO}[

An Approximation Algorithm for l_infinity Fitting Robinson Structures to Distances

Victor Chepoi & Morgan Seston
In this paper, we present a factor 16 approximation algorithm for the following NP-hard distance fitting problem: given a finite set $X$ and a distance $d$ on $X$, find a Robinsonian distance $d_R$ on $X$ minimizing the $l_{\infty}$-error $||d-d_R||_{\infty}=\mbox{max}_{x,y\in X}\{ |d(x,y)-d_R(x,y)|\}.$ A distance $d_R$ on a finite set $X$ is Robinsonian if its matrix can be symmetrically permuted so that its elements do not decrease when moving away from the main diagonalalong any row or...

Nonclairvoyant Speed Scaling for Flow and Energy

Ho-Leung Chan, Jeff Edmonds, Tak-Wah Lam, Lap-Kei Lee, Alberto Marchetti-Spaccamela & Kirk Pruhs
We study online nonclairvoyant speed scaling to minimize total flow time plus energy. We first consider the traditional model where the power function is $P(s)=s^\alpha$. We give a nonclairvoyant algorithm that is shown to be $O(\alpha^3)$-competitive. We then show an $\Omega( \alpha^{1/3-\epsilon} )$ lower bound on the competitive ratio of any nonclairvoyant algorithm. We also show that there are power functions for which no nonclairvoyant algorithm can be $O(1)$-competitive.

Compressed Representations of Permutations, and Applications

Jeremy Barbay & Gonzalo Navarro
We explore various techniques to compress a permutation $\pi$ over $n$ integers, taking advantage of ordered subsequences in $\pi$, while supporting its application $\pi(i)$ and the application of its inverse $\pi^{-1}(i)$ in small time. Our compression schemes yield several interesting byproducts, in many cases matching, improving or extending the best existing results on applications such as the encoding of a permutation in order to support iterated applications $\pi^{k}(i)$ of it, of integer functions, and of...

Locally Decodable Quantum Codes

Jop Briet & Ronald De Wolf
We study a quantum analogue of locally decodable error-correcting codes. A $q$-query \emph{locally decodable quantum code} encodes $n$ classical bits in an $m$-qubit state, in such a way that each of the encoded bits can be recovered with high probability by a measurement on at most $q$ qubits of the quantum code, even if a constant fraction of its qubits have been corrupted adversarially. We show that such a quantum code can be transformed into...

Hardness and Algorithms for Rainbow Connectivity

Sourav Chakraborty, Eldar Fischer, Arie Matsliah & Raphael Yuster
An edge-colored graph $G$ is {\em rainbow connected} if any two vertices are connected by a path whose edges have distinct colors. The {\em rainbow connectivity} of a connected graph $G$, denoted $rc(G)$, is the smallest number of colors that are needed in order to make $G$ rainbow connected. In addition to being a natural combinatorial problem, the rainbow connectivity problem is motivated by applications in cellular networks. In this paper we give the first...

Kolmogorov Complexity and Solovay Functions

Laurent Bienvenu & Rod Downey
Solovay (1975) proved that there exists a computable upper bound~$f$ of the prefix-free Kolmogorov complexity function~$K$ such that $f(x)=K(x)$ for infinitely many~$x$. In this paper, we consider the class of computable functions~$f$ such that $K(x) \leq f(x)+O(1)$ for all~$x$ and $f(x) \leq K(x)+O(1)$ for infinitely many~$x$, which we call Solovay functions. We show that Solovay functions present interesting connections with randomness notions such as Martin-L\"of randomness and K-triviality.

A Comparison of Techniques for Sampling Web Pages

Eda Baykan, Monika Henzinger, Stefan F. Keller, Sebastian De Castelberg & Markus Kinzler
As the World Wide Web is growing rapidly, it is getting increasingly challenging to gather representative information about it. Instead of crawling the web exhaustively one has to resort to other techniques like sampling to determine the properties of the web. A uniform random sample of the web would be useful to determine the percentage of web pages in a specific language, on a topic or in a top level domain. Unfortunately, no approach has...

Tractable Structures for Constraint Satisfaction with Truth Tables

Daniel Marx
The way the graph structure of the constraints influences the complexity of constraint satisfaction problems (CSP) is well understood for bounded-arity constraints. The situation is less clear if there is no bound on the arities. In this case the answer depends also on how the constraints are represented in the input. We study this question for the truth table representation of constraints. We introduce a new hypergraph measure {\em adaptive width} and show that CSP...

Equations over Sets of Natural Numbers with Addition Only

Artur Jez & Alexander Okhotin
Systems of equations of the form $X=YZ$ and $X=C$ are considered, in which the unknowns are sets of natural numbers, ``$+$'' denotes pairwise sum of sets $S+T=\ensuremath{ \{ m+n \: | \: m \in S, \; n \in T \} }$, and $C$ is an ultimately periodic constant. It is shown that such systems are computationally universal, in the sense that for every recursive (r.e., co-r.e.) set $S \subseteq \mathbb{N}$ there exists a system with...

A Unified Algorithm for Accelerating Edit-Distance Computation via Text-Compression

Danny Hermelin, Gad M. Landau, Shir Landau & Oren Weimann
The edit distance problem is a classical fundamental problem in computer science in general, and in combinatorial pattern matching in particular. The standard dynamic-programming solution for this problem computes the edit-distance between a pair of strings of total length $O(N)$ in $O(N^2)$ time. To this date, this quadratic upper-bound has never been substantially improved for general strings. However, there are known techniques for breaking this bound in case the strings are known to compress well...

Approximating Acyclicity Parameters of Sparse Hypergraphs

Fedor V. Fomin, Petr A. Golovach & Dimitrios M. Thilikos
The notions of hypertree width and generalized hypertree width were introduced by Gottlob, Leone, and Scarcello (PODS'99, PODS'01) in order to extend the concept of hypergraph acyclicity. These notions were further generalized by Grohe and Marx in SODA'06, who introduced the fractional hypertree width of a hypergraph. All these width parameters on hypergraphs are useful for extending tractability of many problems in database theory and artificial intelligence. Computing each of these width parameters is known...

Error-Correcting Data Structures

Ronald De Wolf
We study data structures in the presence of adversarial noise. We want to encode a given object in a succinct data structure that enables us to efficiently answer specific queries about the object, even if the data structure has been corrupted by a constant fraction of errors. This new model is the common generalization of (static) data structures and locally decodable error-correcting codes. The main issue is the tradeoff between the space used by the...

Registration Year

  • 2009

Resource Types

  • Text

Data Centers

  • Dagstuhl