204 Works

ОБ ОДНОЭЛЕМЕНТНОЙ ФУНКЦИОНАЛЬНОЙ ПОЛНОТЕ В АЛГЕБРЕ БУЛЕВЫХ ФУНКЦИЙ

А.П. Горюшкин & A.P. Goryshkin
This article covers the problems connected with the functional fullness Boolean function. The results may be used at the study of the structure subalgebas algebras of the Boolean functions.

ОБ УСТОЙЧИВОСТИ НЕЧЕТКИХ СИСТЕМ УПРАВЛЕНИЯ

В.А. Горюшкин & V.A. Goryushkin
Some asymptotic stability conditions of fuzzy control systems via quadratic and fuzzy Lyapunov functions are considered.

ОБ ОРТОГОНАЛЬНОСТИ РЕШЕНИЙ ОДНОЙ СПЕКТРАЛЬНОЙ ЗАДАЧИ В КЛАССЕ ПОЛОИДАЛЬНЫХ ПОЛЕЙ

Г.М. Водинчар, Л.К. Фещенко, G.M. Vodinchar & L.K. Feschenko
We prove the orthogonality of the eigenfields of the spectral problem rot4S+?rotS = 0 in the space of the poloidal field in a spherical shell

МОДЕЛИРОВАНИЕ ПОЛЯ ДЕФОРМАЦИЙ И ЗОН ДИЛАТАНСИИ В УПРУГОМ ПОЛУПРОСТРАНСТВЕ С КОМБИНАЦИЕЙ ДВОЙНЫХ СИЛ

М.Е. Боброва, А.С. Пережогин, M.E. Bobrova & A.S. Perezhogin
A model of the dilatancy’s zones in the stress field of the double forces in a homogeneous, isotropic elastic half-space was considered. Calculations of the stress tensor components and the criterion of dilatancy were perfomed. Relative defomations of Earth crust were interconnected with zone of dilatancy

SOLUTION NONLOCAL EQUATIONS ANOMALOUS DIFFUSION–ADVECTION RADON IN SYSTEM SOIL–ATMOSPHERE

Р.И. Паровик & R.I. Parovik
In this paper we consider a nonlocal mathematical model of non-stationary diffusion- advection of radon in the soil-atmosphere system. An analytical solution of this model of traveling wave, which is expressed in terms of a distribution Wright.

ЧИСЛЕННОЕ РЕШЕНИЕ УРАВНЕНИЯ ДИФФУЗИИ – АДВЕКЦИИ РАДОНА В МНОГОСЛОЙНЫХ ГЕОЛОГИЧЕСКИХ СРЕДАХ

В.С. Яковлева, Р.И. Паровик, V.S. Yakovleva & R.I. Parovik
The solutions of stationary and non-stationary diffusion-advection equations of radon transport in many-layered geological media by integro-interpolation method are presented

СТАТИСТИЧЕСКИЙ АНАЛИЗ ВОЗМУЩЕНИЙ ГЕОАКУСТИЧЕСКОЙ ЭМИССИИ, ПРЕДШЕСТВУЮЩИХ СИЛЬНЫМ ЗЕМЛЕТРЯСЕНИЯМ НА КАМЧАТКЕ

М.А. Мищенко & M.A. Mishenko
The results of statistical analysis of perturbations of geoacoustic emission using the method of superposed epoch. It is shown that 45,8% perturbation of geoacoustic emission arise in the daily range of 2,5 to strong earthquakes.

МОДЕЛИРОВАНИЕ АТМОСФЕРНЫХ ПОЛЕЙ ? - И ? - ИЗЛУЧЕНИЙ, ФОРМИРУЮЩИХСЯ ПОЧВЕННЫМИ РАДИОНУКЛИДАМИ

В.С. Яковлева, В.Д. Каратаев, В.В. Зукау, V.S. Yakovleva, V.D. Karataev & V.V. Zukau
The results of simulation of characteristics of atmospheric ?- and ?-radiation fields due to radioactive decay of soil radionuclides are represented. Monte-Carlo method was used for simulation. Secondary radiation and cascade nature of radiation interaction with air were taking into account. Features in vertical profiles of ? - and ? - radiation absorbed doses and flux densities in ground atmosphere are discussed in detail.

CHARACTERISTIC PROBLEM FOR THE LOADED WAVE EQUATION WITH SPECIFIC CHANGES

А.Х. Аттаев
In this paper the characteristic problem for the wave equation loaded with a special shift. A theorem on the uniqueness of the solution of the Goursat problem and find necessary conditions for its solvability.

О ЕДИНСТВЕННОСТИ АНАЛОГА ЗАДАЧИ ТРИКОМИ ДЛЯ УРАВНЕНИЯ СМЕШАННОГО ТИПА С ДВУМЯ ПАРАЛЛЕЛЬНЫМИ ЛИНИЯМИ ВЫРОЖДЕНИЯ

З.В. Кудаева & Z.V. Kudaeva
В работе доказана единственность аналог задачи Трикоми для уравнения смешан- ного типа в области, содержащей внутри себя две параллельные линии параболи- ческого вырождения.

ЗАДАЧА С УСЛОВИЕМ САМАРСКОГО ДЛЯ УРАВНЕНИЯ ДРОБНОЙ ДИФФУЗИИ В ПОЛУПОЛОСЕ

Ф.М. Лосанова & F.M. Losanova
In this paper, we construct a solution of a nonlocal boundary value problem with the condition Samarskii for a fractional diffusion equation in the half.

НЕОБХОДИМОЕ И ДОСТАТОЧНОЕ УСЛОВИЕ ЕДИНСТВЕННОСТИ РЕШЕНИЯ ЗАДАЧИ ДИРИХЛЕ ДЛЯ НЕЛОКАЛЬНОГО ВОЛНОВОГО УРАВНЕНИЯ

О.Х. Масаева & O.Kh. Masaeva
In this paper we find necessary and sufficient conditions for the uniqueness of the solution of the Dirichlet problem for the wave equation.

О МОДЕЛИ НАГРУЖЕННОГО ГИПЕРБОЛО-ПАРАБОЛИЧЕСКОГО УРАВНЕНИЯ В ЧАСТНЫХ ПРОИЗВОДНЫХ ВТОРОГО ПОРЯДКА

К.У. Хубиев & K.U. Khubiev
We studied a models of loaded equation of mixed hyperbolic-parabolic type with characteristicly and not characteristicly modifying line. For the proposed equation models boundary value problem is considered and solutions is written out.

КРАЕВАЯ ЗАДАЧА ДЛЯ ДИФФЕРЕНЦИАЛЬНОГО УРАВНЕНИЯ С ПРОИЗВОДНЫМИ ДРОБНОГО ПОРЯДКА С РАЗЛИЧНЫМИ НАЧАЛАМИ

Л.М. Энеева & L.M. Eneeva
We study a spectral problem for an ordinary differential equation with composition of fractional order differentiation operators in Riemann-Liouville and Caputo senses with different origins. We prove that for the problem under study there exist infinite sequences of eigenvalues and eigenfunctions. All of the eigenvalues are real and positive, and the eigenfunctions form an orthogonal basis in L2(0,1).

ИНВЕРСИИ В МОДЕЛИ ГЕОДИНАМО, УПРАВЛЯЕМОЙ 6-ЯЧЕЙКОВОЙ КОНВЕКЦИЕЙ

Г.М. Водинчар, Л.К. Фещенко, G.M. Vodinchar & L.K. Feshenko
We describe the large-scale model geodynamo, which based on indirect data of inhomogeneities in the density of the Earth’s core. Convection structure is associated with spherical harmonic Y42, which defines the basic poloidal component of velocity. Coriolis drift of this mode determines the toroidal component of velocity. Thus, 6 convective cells are formed. The model takes into account the feedback effect of the magnetic field on convection.It was ascertained that the model contains stable regimes...

ИНВЕРСИИ МАГНИТНОГО ПОЛЯ В МОДЕЛИ КРУПНОМАСШТАБНОГО ?? -ДИНАМО

Г.М. Водинчар, А.Н. Годомская, О.В. Шереметьева, G.M. Vodinchar & A.N. Godomskaya
In the paper investigates the question of the possibility of a reversal in the framework of low-mode model, ?? -dinamo. The parameters of the MHD system in which the possible reversal of the magnetic field in the relative constancy of the velocity field are defined. There are results of numerical solution of the assumption of various type of ? -effect amplitude dependence from the radius.

ТЕСТ ПЕНЛЕВЕ ДЛЯ ОДНОЙ СИСТЕМЫ МАГНИТНОЙ ГИДРОДИНАМИКИ

Г.М. Водинчар, Д.С. Нощенко, А.С. Пережогин, G.M. Vodinchar, D.S. Noshenko & A.S. Perezhogin
One approximation of magnetohydrodynamics equations, which describe the cosmic object’s magnetic field, is considered. The analytic properties of a nonlinear system are investigated by Painleve? test. Values of the coefficients in a simplified magnetohydrodynamics system are calculated for the necessary condition of Painleve? property.

СОХРАНЕНИЕ ТРЕТЬЕГО АДИАБАТИЧЕСКОГО ИНВАРИАНТА ДВИЖЕНИЯ В ПЛОСКОСТИ ЭКВАТОРА МАГНИТНОГО ПОЛЯ СО СЛАБОЙ АКСИАЛЬНОЙ НЕСИММЕТРИЕЙ

В.В. Богданов, А.В. Кайсин, V.V. Bogdanov & A.V. Kaisin
The question of preservation of the third adiabatic invariant motion of charged particles vII = 0 (equatorial plane) in the flow and the canonical form in magnetic fields having a weak asymmetry. Go to rotating with the angular velocity of the drift coordinate system allows us to reduce the problem to have been solved, namely, the task of saving the third adiabatic invariant in the axially symmetric, but the time-varying magnetic field.

ОЧИСТКА СИГНАЛОВ ГЕОАКУСТИЧЕСКОЙ ЭМИССИИ ОТ ПРИРОДНЫХ И ТЕХНОГЕННЫХ ШУМОВ МЕТОДОМ РАЗРЕЖЕННОЙ АППРОКСИМАЦИИ

О.О. Луковенкова & O.O. Lukovenkova
The approach of geoacoustic emission signals denoising from native and technogenic noises based on sparse approximation method is offered in this paper. The use of this means made it possible to clear geoacoustic emission pulses from technogenic parasitical component.

КОНЕЧНО-РАЗНОСТНЫЕ СХЕМЫ ДЛЯ ФРАКТАЛЬНОГО ОСЦИЛЛЯТОРА С ПЕРЕМЕННЫМИ ДРОБНЫМИ ПОРЯДКАМИ

Р.И. Паровик & R.I. Parovik
The paper deals with the explicit finite difference schemes for the fractional oscillator. The questions of approximation, stability and convergence of these schemes.

РЕШЕНИЯ ЗАДАЧ МАТЕМАТИЧЕСКОЙ ОЛИМПИАДЫ «ВИТУС БЕРИНГ – 2015»

Г.М. Водинчар, О.К. Жданова, Л.Д. Островерхая, Р.И. Паровик, А.С. Пережогин, О.В. Шереметьева, Т.П. Яковлева, G.M. Vodinchar, O.K. Zhdanova, L.D. Ostroverhaya, R.I. Parovik, A.S. Perezhogin, O.V. Sheremet’Eva & T.P. Yakovleva
We consider solutions of Mathematical Olympiad «Vitus Bering – 2015» for high school students. It was held at Kamchatka State University in November 2015.

ОБ УСТОЙЧИВОСТИ КРАЕВОЙ ЗАДАЧИ ДЛЯ УРАВНЕНИЯ ЧЕТНОГО ПОРЯДКА

А.В. Юлдашева & A.V. Yuldasheva
In this paper not well posed problem for the even-order equation is studied. The stability of the problem is restored by additional conditions and conditions to domain.

МАТЕМАТИЧЕСКОЕ МОДЕЛИРОВАНИЕ ЗАКОНА ИЗМЕНЕНИЯ ЗАРЯДА ОБЛАЧНЫХ КАПЕЛЬ ВО ФРАКТАЛЬНОЙ СРЕДЕ

Т.С. Кумыков, Р.И. Паровик, T.S. Kumykov & R.I. Parovik
The paper proposed a new mathematical model of the variation of the charge cloud drops in storm clouds. The model takes into account the fractal properties of storm clouds, and the solution was obtained using the apparatus of fractional calculus.

МАТЕМАТИЧЕСКОЕ МОДЕЛИРОВАНИЕ НЕЛОКАЛЬНОЙ КОЛЕБАТЕЛЬНОЙ СИСТЕМЫ ДУФФИНГА С ФРАКТАЛЬНЫМ ТРЕНИЕМ

Р.И. Паровик & R.I. Parovik
The paper considers a nonlinear fractal oscillatory Duffing system with friction. The numerical analysis of this system by a finite-difference scheme was carried out. Phase portraits and system solutions were constructed depending on fractional parameters.

Resource Types

  • Text
    204

Publication Year

  • 2016
    74
  • 2015
    30
  • 2014
    35
  • 2013
    20
  • 2012
    17
  • 2011
    18
  • 2010
    10

Registration Year

  • 2016
    204

Data Centers

  • Russian Agency for Digital Standardization
    204