2 Works

Data from: Live-cell single particle imaging reveals the role of RNA polymerase II in histone H2A.Z eviction

Anand Ranjan, Vu Q. Nguyen, Sheng Liu, Jan Wisniewski, Kim Jee Min, Xiaona Tang, Gaku Mizuguchi, Vivian Jou, Timothy J. Nickels, Brian P. English, Qinsi Zheng, Ed Luk, Timothee Lionnet, Luke D. Lavis, Carl Wu & Ejlal Elalaoui
The H2A.Z histone variant, a genome-wide hallmark of permissive chromatin, is enriched near transcription start sites in all eukaryotes. H2A.Z is deposited by the SWR1 chromatin remodeler and evicted by unclear mechanisms. We tracked H2A.Z in living yeast at single-molecule resolution, and found that H2A.Z eviction is dependent on RNA Polymerase II (Pol II) and the Kin28/Cdk7 kinase, which phosphorylates Serine 5 of heptapeptide repeats on the carboxy-terminal domain of the largest Pol II subunit...

Inference of nonlinear receptive field subunits with spike-triggered clustering

Nishal Shah, Nora Brackbill, Colleen Rhoades, Alexandra Kling, Georges Goetz, Alan Litke, Alexander Sher, Eero Simoncelli & E.J. Chichilnisky
Responses of sensory neurons are often modeled using a weighted combination of rectified linear subunits. Since these subunits often cannot be measured directly, a flexible method is needed to infer their properties from the responses of downstream neurons. We present a method for maximum likelihood estimation of subunits by soft-clustering spike-triggered stimuli, and demonstrate its effectiveness in visual neurons. Subunits estimated from parasol retinal ganglion cells (RGCs) in macaque retina partitioned the receptive field into...

Registration Year

  • 2020
    2

Resource Types

  • Dataset
    2

Affiliations

  • Howard Hughes Medical Institute
    2
  • Stanford University
    1
  • Johns Hopkins University
    1
  • New York University
    1
  • University of California, Santa Cruz
    1
  • National Cancer Institute
    1
  • Stony Brook University
    1