Data from: The Paleozoic origin of enzymatic lignin decomposition reconstructed from 31 fungal genomes

Dimitrios Floudas, Manfred Binder, Robert Riley, Kerrie Barry, Robert A. Blanchette, Bernard Henrissat, Angel T. Martínez, Robert Ortillar, Joseph W. Spatafora, Jagjit S. Yadav, Andrea Aerts, Isabelle Benoit, Alex Boyd, Alexis Carlson, Alex Copeland, Pedro M. Coutinho, Ronald P. De Vries, Patricia Ferreira, Keisha Findley, Brian Foster, Jill Gaskell, Dylan Glotzer, Paweł Górecki, Joseph Heitman, Cedar Hesse … & David S. Hibbett
Wood is a major pool of organic carbon that is highly resistant to decay, owing largely to the presence of lignin. The only organisms capable of substantial lignin decay are white rot fungi in the Agaricomycetes, which also contains non–lignin-degrading brown rot and ectomycorrhizal species. Comparative analyses of 31 fungal genomes (12 generated for this study) suggest that lignin-degrading peroxidases expanded in the lineage leading to the ancestor of the Agaricomycetes, which is reconstructed as...

Registration Year

  • 2012
    1

Resource Types

  • Dataset
    1

Affiliations

  • Department of Plant Biology
    1
  • Oregon State University
    1
  • University of Zaragoza
    1
  • University of Minnesota
    1
  • United States Department of Energy
    1
  • University of Cincinnati
    1
  • University of Göttingen
    1
  • Vanderbilt University
    1
  • Swedish University of Agricultural Sciences
    1
  • Forest Products Laboratory
    1